Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 200turnsolenoid having a length of25cmand a diameter of10cmcarries a current of0.29A. Calculate the magnitude of the magnetic field inside the solenoid.

Short Answer

Expert verified

The magnitude of the magnetic field inside the solenoid is 3×10-4T.

Step by step solution

01

Listing the given quantities

  • l=25cm=0.25m
  • d=10cm=0.10m
  • N=200
  • i=0.29A
02

Understanding the concept of magnetic field and solenoid  

We can calculate the magnetic field due to an ideal solenoid. In our case, the solenoid has a definite length, so we use this equation to calculate the magnetic field inside the solenoid.

Formula:

B=μ0in=μ0iNl

03

Calculate the magnitude of the magnetic field

We can calculate the magnetic field.

B=μ0in=μ0iNl=1.26×10-6×0.29×2000.25=2.92×10-4T3×10-4T

Hence, the magnitude of the magnetic field inside the solenoid is 3×10-4T.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 29-87 shows a cross section of a hollow cylindrical conductor of radii aand b, carrying a uniformly distributed currenti. (a) Show that the magnetic field magnitude B(r) for the radial distancer in the rangeb<r<ais given byB=μ0i2πra2-b2·(r2-b2)r

(b) Show that when r = a, this equation gives the magnetic field magnitude Bat the surface of a long straight wire carrying current i; when r = b, it gives zero magnetic field; and when b = 0, it gives the magnetic field inside a solid conductor of radius acarrying current i. (c) Assume that a = 2.0 cm, b = 1,8 cm, and i = 100 A, and then plot B(r) for the range 0<r<6.0cm .

Figure 29-52 shows, in cross section, four thin wires that are parallel, straight, and very long. They carry identical currents in the directions indicated. Initially all four wires are atdistanced=15.0cmfrom the origin of the coordinate system, where they create a net magnetic field .(a) To what value of xmust you move wire 1 along the xaxis in order to rotate counter clockwise by 30°? (b) With wire 1 in that new position, to what value of xmust you move wire 3 along the xaxis to rotate by30°back to its initial orientation?

A long wire carrying 100A is perpendicular to the magnetic field lines of a uniform magnetic field of magnitude 5.0 mT. At what distance from the wire is the net magnetic field equal to zero?

Figure 29-34 shows three arrangements of three long straight wires carrying equal currents directly into or out of the page. (a) Rank the arrangements according to the magnitude of the net force on wire Adue to the currents in the other wires, greatest first. (b) In arrangement 3, is the angle between the net force on wire A and the dashed line equal to, less than, or more than 45°?

A student makes a short electromagnet by winding of wire 300turnsaround a wooden cylinder of diameterd=5.0cm. The coil is connected to a battery producing a current of4.0Ain the wire. (a) What is the magnitude of the magnetic dipole moment of this device? (b) At what axial distance d will the magnetic field have the magnitude5.0μT(approximately one-tenth that of Earth’s magnetic field)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free