Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The current density J inside a long, solid, cylindrical wire of radius a=3.1mm is in the direction of the central axis, and its magnitude varies linearly with radial distance rfrom the axis according toJ=J0r/a, where J0=310A/m2. (a) Find the magnitude of the magnetic field at role="math" localid="1663132348934" r=0, (b) Find the magnitude of the magnetic fieldr=a/2 , and(c) Find the magnitude of the magnetic field r=a.

Short Answer

Expert verified
  1. The magnitude of the magnetic field atr=0is zero.
  2. The magnitude of the magnetic field atr=a2isB=0.10μT
  3. The magnitude of the magnetic field at r=a is B=0.40μT

Step by step solution

01

Listing the given quantities

  • The radius of the wirea=3.1mm=0.0031m
  • Current density varies asJ=J0ra
  • J0=310A/m2
02

Understanding the concept of magnetic field and Ampere’s law

The relation between current and current density is,

i=JdA

Ampere’s law states that,

Bds=μ0i

The line integral in this equation is evaluated around a closed-loop called an Amperian loop.The current ion the right side is the net current encircled by the loop.

By using the current density equation in Ampere’s law and integrating it with respect to distance r, we can get the general equation for the magnetic field due to the current-carrying cylindrical wire. By using this, we can find the value of the magnetic field at given distances.

03

Explanation

According to Ampere’s law,

Bds=μ0iencBds=μ0ienc

Sinceds=lengthofthecircularpath=2πr

B(2πr)=μ0ienc (i)

Current is given by,

ienc=JdA

Using the given current density J=J0ra

ienc=J0radA

Area of a differential element of the circle isdA=2πrdr

ienc=J0ra2πrdr=2πJ0ar2dr=2πJ0ar33

Using this in equation (i),

B(2πr)=μ02πJ0ar33

Therefore,

B=μ0J03r2a (ii)

04

(a) Calculations of the magnitude of magnetic field at r=0

At r=0, Equation (ii) becomes,

B=μ0J03×0a=0

Thus, the magnetic field at r=0 is zero.

05

(b) Calculations of the magnitude of magnetic field at r=a/2

Atr=a2,Equation2becomes

B=μ0J03×(a2)2aB=μ0J0a12=4π×10-7×310×0.003112=4×3.14×10-7×310×0.003112=0.1×10-6T=0.10μT

Thus, The magnetic field at r=a2 is B=0.10μT

06

(c) Calculations of the magnitude of magnetic field at r=a 

Atr=a,Equation(2)becomes

B=μ0J03×a2a=μ0J0a3=4π×10-7×310×0.00313=4×3.14×10-7×310×0.00313=4.02×10-7T=0.40μT

Thus, the magnetic field at r=a is B=0.40μT.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Figure, a long circular pipe with outside radius R=2.6cmcarries a (uniformly distributed) current i=8.00mAinto the page. A wire runs parallel to the pipe at a distance of 3.00Rfrom center to center. (a) Find the magnitude and (b) Find the direction (into or out of the page) of the current in the wire such that the net magnetic field at point Phas the same magnitude as the net magnetic field at the center of the pipe but is in the opposite direction.

In Figure, point P is at perpendicular distance R=2.00cmfrom a very long straight wire carrying a current. The magnetic field Bset up at point Pis due to contributions from all the identical current length elements idsalong the wire. What is the distanceto the element making (a) The greatest contribution to field Band (b) 10.0% of the greatest contribution?

Figure 29-50ashows, in cross section, two long, parallel wires carrying current and separated by distance L. The ratio i1/i2 of their currents is4.00; the directions of the currents are not indicated. Figure 29-50bshows the ycomponent Byof their net magnetic field along the xaxis to the right of wire 2. The vertical scale is set by Bys=4.0nT , and the horizontal scale is set by xs=20.0cm . (a) At what value of x0 is Bymaximum?(b) If i2=3mA, what is the value of that maximum? What is the direction (into or out of the page) of (c) i1 and (d) i2?

Question: In Figure, current I=56.2mAis set up in a loop having two radial lengths and two semicircles of radiia=5.72cm andb=9.36cm with a common centerP(a) What are the magnitude and (b) What are the direction (into or out of the page) of the magnetic field at P and the (c) What is the magnitude of the loop’s magnetic dipole moment? and (d) What is the direction of the loop’s magnetic dipole moment?

A long solenoid has 100 turns/cmand carries current iAn electron moves within the solenoid in a circle of radius 2.30cmperpendicular to the solenoid axis. The speed of the electron is 0.0460c(c= speed of light). Find the currentiin the solenoid.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free