Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure a shows an element of length ds=1.00μmin a very long straight wire carrying current. The current in that element sets up a differential magnetic field at points in the surrounding space. Figure b gives the magnitudedBof the field for points2.5cmfrom the element, as a function of angle u between the wire and a straight line to the point. The vertical scale is set bydBs=60.0pT. What is the magnitude of the magnetic field set up by the entire wire at perpendicular distance2.5cmfrom the wire?


Short Answer

Expert verified

The value of the magnetic field is3.0μT.

Step by step solution

01

Understanding the concept

Use the Biot- savart law to calculate the current through the wire. Then, using this current value and the equation for magnetic field due to an infinitely long wire carrying current, find the magnetic field.

dB=μ04πidssinθr2

02

Calculating the magnitude of the magnetic field set

Let us find the current through the wire first

Forθ=900

dB=μ04πidsr2

Hence,i=0.375A

Now, to find magnetic field (B):

Magnetic field due to infinite wire carrying current(i):B=μ0i2πR

Substitute the values and solve as:

B=(4π×10-7)×0.3752π×0.025B=3×106B=3.0μT

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The current density J inside a long, solid, cylindrical wire of radius a=3.1mm is in the direction of the central axis, and its magnitude varies linearly with radial distance rfrom the axis according toJ=J0r/a, where J0=310A/m2. (a) Find the magnitude of the magnetic field at role="math" localid="1663132348934" r=0, (b) Find the magnitude of the magnetic fieldr=a/2 , and(c) Find the magnitude of the magnetic field r=a.

Two long straight wires are parallel and 8.0cmapart .They are to carry equal currents such that the magnetic field at a point halfway between them has magnitude 300μT. (a) Should the currents be in the same or opposite directions? (b) How much current is needed?

In Figure, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a=13.5cm. Each wire carries7.50A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3. In unit vector notation, what is the net magnetic force per meter of wirelengthon wire 4?

A solenoid 1.30 long and2.60cm in diameter carries a current of 1.80A. The magnetic field inside the solenoid is 23.0mT . Find the length of the wire forming the solenoid.

Question: In Fig 29-76 a conductor carries6.0Aalong the closed path abcdefgharunning along 8of the 12edges of a cube of edge length 10cm. (a)Taking the path to be a combination of three square current loops (bcfgb, abgha, and cdefc), find the net magnetic moment of the path in unit-vector notation.(b) What is the magnitude of the net magnetic field at the xyzcoordinates of(0,5.0m,0)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free