Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A wire with currenti=3.00Ais shown in Figure. Two semi-infinite straight sections, both tangent to the same circle, are connected by a circular arc that has a central angle θand runs along the circumference of the circle. The arc and the two straight sections all lie in the same plane. If B=0at the circle’s center, what is θ?

Short Answer

Expert verified

The value of for the zero magnetic field at the circle’s center isθ=2.00rad.

Step by step solution

01

Given

  1. The current flowing through the wire is i=3.00A
  2. The magnetic field at the circle’s center is B=0T.
02

Determine the formulas for the magnetic field as:

Formula:

Bstraight=μ0i4πR

Barc=μ0i4πR

03

Calculate the value of ∅  for the zero magnetic field at the circle’s center

The magnetic field due to a current in semi-infinite straight wire is as follows:

Bstraight=μ0i4πR

According to the right hand rule, both wires produce a magnetic field that is pointing out of the page.

The magnetic field due to the current in a circular arc of the wire is:

Barc=μ0i4πR

According to the right hand rule, it is pointing into the page.

The total magnetic field for the system is:

B=2Bstraight=Barc

B=2μ0i4πR-μ0i4πR

B=2μ0i4πR-μ0i4πR

0T=2μ0i4πR-μ0i4πR

Solve further as:

2μ0i4πR=μ0i4πR

=2.00rad

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Figure, a current i=10Ais set up in a long hairpin conductor formed by bending a wire into a semicircle of radiusR=5.0mm. Point bis midway between the straight sections and so distant from the semicircle that each straight section can be approximated as being an Infinite wire. (a)What are the magnitude and (b) What is the direction (into or out of the page) of Bat aand (c) What are the magnitude and (d) What is the direction B of at b?


A student makes a short electromagnet by winding of wire 300turnsaround a wooden cylinder of diameterd=5.0cm. The coil is connected to a battery producing a current of4.0Ain the wire. (a) What is the magnitude of the magnetic dipole moment of this device? (b) At what axial distance d will the magnetic field have the magnitude5.0μT(approximately one-tenth that of Earth’s magnetic field)?

A long wire is known to have a radius greater than4.00mmand to carry a current that is uniformly distributed over its cross section. The magnitude of the magnetic field due to that current is0.28mTat a point4.0mmfrom the axis of the wire, and0.20mTat a point 10 mm from the axis of the wire. What is the radius of the wire?

Figure 29-85 shows, in cross section, two long parallel wires that are separated by distance d=18.6cm. Each carries 4.23A, out of the page in wire 1 and into the page in wire 2. In unit-vector notation, what is the net magnetic field at point Pat distance R=34.2cm, due to the two currents?

Figure 29-52 shows, in cross section, four thin wires that are parallel, straight, and very long. They carry identical currents in the directions indicated. Initially all four wires are atdistanced=15.0cmfrom the origin of the coordinate system, where they create a net magnetic field .(a) To what value of xmust you move wire 1 along the xaxis in order to rotate counter clockwise by 30°? (b) With wire 1 in that new position, to what value of xmust you move wire 3 along the xaxis to rotate by30°back to its initial orientation?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free