Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A surveyor is using a magnetic compass 6.1m below a power line in which there is a steady current of 100A .(a) What is the magnetic field at the site of the compass due to the power line? (b) Will this field interfere seriously with the compass reading? The horizontal component of Earth’s magnetic field at the site is role="math" localid="1663130453654" 20mT .

Short Answer

Expert verified

a.B=3.3μT

b. It will affect the compass reading.

Step by step solution

01

Given Information

The radius isr=6.1m

The current is i=100A

Horizontal component of earth’s magnetic field at the site is 20μT.

02

Determining the formulae

Consider equation of magnetic field due to current carrying wire at a point away from the wire at a distance r. Using this equation, calculate the magnetic field due to the wire and comparing it with the horizontal component of earth’s magnetic field, we can determine whether it will affect the compass reading or not.

Magnetic fieldB due to currenti in the wire at any point at a distance r from the wire is: B=μ0i2πr

Here, μ0 is the permeability of the free space.

03

(a) Calculating the magnetic field at the site of the compass due to the power line

Magnetic field Bdue to current (i)in the wire at a point and distance r from the wire is:

B=μ0i2πr

B=4π×10-7×1002π×6.1=3.3×10-6T

B=3.3μT

04

(b) Figuring out if this field will interfere seriously with the compass reading

Consider the horizontal component of earth’s magnetic field is20μT.The value we got is approximately one sixth of the magnetic field of earth.

Therefore, it will affect the compass reading.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 29-30 shows four circular Amperian loops (a, b, c, d) concentric with a wire whose current is directed out of the page. The current is uniform across the wire’s circular cross section (the shaded region). Rank the loops according to the magnitude of B.dsaround each, greatest first.

Figure 29-87 shows a cross section of a hollow cylindrical conductor of radii aand b, carrying a uniformly distributed currenti. (a) Show that the magnetic field magnitude B(r) for the radial distancer in the rangeb<r<ais given byB=μ0i2πra2-b2·(r2-b2)r

(b) Show that when r = a, this equation gives the magnetic field magnitude Bat the surface of a long straight wire carrying current i; when r = b, it gives zero magnetic field; and when b = 0, it gives the magnetic field inside a solid conductor of radius acarrying current i. (c) Assume that a = 2.0 cm, b = 1,8 cm, and i = 100 A, and then plot B(r) for the range 0<r<6.0cm .

Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of λ; the current emerges perpendicularly out of the page. (a) Use the Biot – Savart law and symmetry to show that for all pointsP above the sheet and all points P'below it, the magnetic fieldBis parallel to the sheet and directed as shown. (b) Use Ampere’s law to prove that B=12·μ0λ at all points P andP'.

A circular loop of radius12cmcarries a current of15A. A flat coil of radius0.82cmhaving50turnsand a current of 1.3A, is concentric with the loop. The plane of the loop is perpendicular to the plane of the coil. Assume the loop’s magnetic field is uniform across the coil. (a) What is the magnitude of the magnetic field produced by the loop at its center and (b) What is the magnitude of the torque on the coil due to the loop?

A long, hollow, cylindrical conductor (with inner radius 2.0mm and outer radius 4.0mm) carries a current of 24A distributed uniformly across its cross section. A long thin wire that is coaxial with the cylinder carries a current of 24A in the opposite direction. What is the magnitude of the magnetic field (a) 1.0mm,(b) 3.0mm, and (c) 5.0mm from the central axis of the wire and cylinder?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free