Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Fig 29-55, two long straight wires (shown in cross section) carry currentsi1=30.0mAandi1=40.0mAdirectly out of the page. They are equal distances from the origin, where they set up a magnetic field. To what value must current i1be changed in order to rotate20.0°clockwise?

Short Answer

Expert verified

The value of current i1 is i1=61.3mA.

Step by step solution

01

Given

i) Currents flowing through the two long straight wires are i1=30.0mAand i2=40.0mA

ii) The rotation of net magnetic field Bisθ=20.0°.

02

Determine the formula for the magnetic field as:

Use the concept of the magnetic force due to current in straight wires and trigonometry.

Formulae:

Bstraight=μ0i4πR

tanθ=ByBx

03

Calculate the value to which current i1 must be changed in order to rotate 20.0° clockwise

The value of current i1:

The magnetic field due to a current in straight wire is

Bstraight=μ0i4πR

The distances of the B1and B2are the same; hence they are directly proportional localid="1663143974221" i1and i2respectively.

B1αi1and

B2αi2

According to the right hand rule,is going to the y axis andis going along x axis.

The angle of the net field is

tanθ=ByBx

tanθ=B2B1

θ=tan-1i2i1

Substitute the values and solve as:

θ=tan-140.0mA30.0mA

θ=53.13°

In the problem, the net field rotation is

θ'=θ-20.0°

θ'=53.13°-20.0°

θ'=33.13°

The final value of the current is:

tanθ'=i2i1

i1=i2tanθ'

Substitute the values and solve as:

i1=40.0mAtan33.13°

i1=61.3mA

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure a shows, in cross section, three current-carrying wires that are long, straight, and parallel to one another. Wires 1 and 2 are fixed in place on an xaxis, with separation d. Wire 1 has a current of0.750A, but the direction of the current is not given. Wire 3, with a current of0.250Aout of the page, can be moved along the xaxis to the right of wire 2. As wire 3 is moved, the magnitude of the net magnetic forceF2on wire 2 due to the currents in wires 1 and 3 changes. The xcomponent of that force is F2xand the value per unit length of wire 2 isF2x/L2. Figure bgivesF2x/L2versus the position xof wire 3. The plot has an asymptoteF2xL2=-0.627μN/masx.The horizontal scale is set byxs=12.0cm. (a) What are the size of the current in wire 2 and (b) What is the direction (into or out of the page) of the current in wire 2?

In Figure 29-46 two concentric circular loops of wire carrying current in the same direction lie in the same plane. Loop 1 has radius1.50cm and carries 4.00mA. Loop 2 has radius2.50cmand carries 6.00mA.Loop 2 is to be rotated about a diameter while the net magnetic field Bset up by the two loops at their common center is measured. Through what angle must loop 2 be rotated so that the magnitude of that net field is 100nT?

A wire with currenti=3.00Ais shown in Figure. Two semi-infinite straight sections, both tangent to the same circle, are connected by a circular arc that has a central angle θand runs along the circumference of the circle. The arc and the two straight sections all lie in the same plane. If B=0at the circle’s center, what is θ?

Show that the magnitude of the magnetic field produced at the center of a rectangular loop of wire of lengthLand widthW, carrying a current i, is

B=2μ0iπ·(L2+W2)12LW

Question: Figure 29-31 shows four arrangements in which long, parallel, equally spaced wires carry equal currents directly into or out of the page. Rank the arrangements according to the magnitude of the net force on the central wire due to the currents in the other wires, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free