Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A long wire carrying 100A is perpendicular to the magnetic field lines of a uniform magnetic field of magnitude 5.0 mT. At what distance from the wire is the net magnetic field equal to zero?

Short Answer

Expert verified

Point on the line parallel to the wire at a distance r=4.0×10-3m

Step by step solution

01

Given

Bext=5.0×103 T, the field lines are perpendicular to the wire i=100A.

02

Understanding the concept

We can use the equation for the field produced by the long current-carrying wire at a point away from the wire. The distance should be such that the field produced by the wire is exactly the same as the given field.

Formula:

Magnetic field due to a long straight wire at distance r from the wire carrying current i

Br=μ0i2πr

03

Calculate distance from the wire where the net magnetic field is zero

Since the long wire is kept in an external magnetic field, the field due to wire (Bw) and external magnetic field (Bext) will cancel out when their magnitudes are the same, and the direction is opposite. So, the set points which will satisfy this condition lie on the line parallel to the wire at distance r.

Br=μ0i2πr=Bextr=μ0i2πBextr=1.26×106×1002×π×5.0×103r=4.0×103 m

Hence, the Point on the line parallel to the wire at a distancer=4.0×10-3m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The magnitude of the magnetic field 88.0cmfrom the axis of a long straight wire is7.30μT. What is the current in the wire?

In Fig. 29-44 point P1is at distance R=13.1cmon the perpendicular bisector of a straight wire of length L=18.0cm. carrying current. (Note that the wire is notlong.) What is the magnitude of the magnetic field at P1due to i?

In Fig. 29-54a, wire 1 consists of a circular arc and two radial lengths; it carries currenti1=0.50Ain the direction indicated. Wire 2, shown in cross section, is long, straight, and Perpendicular to the plane of the figure. Its distance from the center of the arc is equal to the radius Rof the arc, and it carries a current i2 that can be varied. The two currents set up a net magnetic fieldBat the center of the arc. Figure bgives the square of the field’s magnitude B2 plotted versus the square ofthe currenti22. The vertical scale is set byBs2=10.0×10-10T2what angle is subtended by the arc?

A long wire is known to have a radius greater than4.00mmand to carry a current that is uniformly distributed over its cross section. The magnitude of the magnetic field due to that current is0.28mTat a point4.0mmfrom the axis of the wire, and0.20mTat a point 10 mm from the axis of the wire. What is the radius of the wire?

A long solenoid has 100 turns/cmand carries current iAn electron moves within the solenoid in a circle of radius 2.30cmperpendicular to the solenoid axis. The speed of the electron is 0.0460c(c= speed of light). Find the currentiin the solenoid.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free