Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 5-64, a force of magnitude 12N is applied to a FedEx box of mass m2=1.0kG . The force is directed up a plane tilted by θ=37° . The box is connected by a cord to a UPS box of mass m1=3.0kg on the floor. The floor, plane, and pulley are frictionless, and the masses of the pulley and cord are negligible. What is the tension in the cord?

Short Answer

Expert verified

Tension (T) is 4.6N

Step by step solution

01

Given information

It is given that,

F=12N

m2=1.0kg

θ=370

m1=3.0kg

02

Determining the concept

The problem is based on Newton’s second law of motion which states that the rate of change of momentum of a body is equal in both magnitude and direction of the force acting on it. Thus, using the free body diagramdifferent forces acting on the objects can be found. Further, using Newton's second law of motion, the acceleration and tension in the cord can be computed.

Formula:

According to the Newton’s second law of motion,

Fnet=Ma

03

Determining the tension in the cord

Free Body Diagram:

F-I-m2gsinθ=m2a

T=m1a

By solving above two equations,

a=F-m2gsinθm1+m2

a=12-(1x9.8xsin(37°)(3+1)=1.53m/s2

Now, tension is given by,

T=m1a=3x1.53=4.6N

Hence, tension is 4.6N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig.7-30, a block of ice slides down a frictionless ramp at angle θ=50while an ice worker pulls on the block (via a rope) with a force Fthat has a magnitude of 50Nand is directed up the ramp. As the block slides through distance d=0.50malong the ramp, its kinetic energy increases by . How much greater would its kinetic energy have been if the rope had not been attached to the block?

To push a 25.0 kg crate up a frictionless incline, angled at 25.0°to the horizontal, a worker exerts a force of 209 N parallel to the incline. As the crate slides1.50 m, how much work is done on the crate by (a) the worker’s applied force, (b) the gravitational force on the crate, and (c) the normal force exerted by the incline on the crate? (d) What is the total work done on the crate?

The only force acting on a2.0kgbody as it moves along a positive x axis has an x component, fx=-6xNwith x in meters. The velocity atx=3.0mis8.0m/s. (a) What is the velocity of the body atx=4.0m? (b) At what positive value of x will the body have a velocity of5.0m/s?

In three situations, a briefly applied horizontal force changes the velocity of a hockey puck that slides over frictionless ice. The overhead views of Fig.7-17indicates for each situation, the puck’s initial speed v, its final speed v, and the directions of the corresponding velocity vectors. Rank the situations according to the work done on the puck by the applied force, most positive first and most negative last

Figure 7-19 gives the xcomponent fxof a force that can act on a particle. If the particle begins at rest at x=0, what is its coordinate when it has (a) its greatest kinetic energy, (b) its greatest speed, and (c) zero speed? (d) What is the particle’s direction of travel after it reaches x=6m?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free