Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 35-4, assume that the two light waves, of wavelength 620nm in air, are initially out of phase by π rad. The indexes of refraction of the media are n1=1.45 andn2=1.65 . What are the (a) smallest and (b) second smallest value of Lthat will put the waves exactly in phase once they pass through the two media?

Short Answer

Expert verified

(a) The smallest value of Lis 1.55×10-6m .

(b) The second smallest value of L is 4.65×10-6m.

Step by step solution

01

Write the given data from the question:

The wavelength in air,λ=620nm

The phase difference,Δϕ=π

The refractive index of medium 1, n1=1.45

The refractive index of medium 2, n2=1.65

02

Determine the formulas to calculate the smallest and second smallest value of L:

The expression to calculate the phase difference is given as follows.

Δϕ=2πL(n2λ-n1λ)

L=λΔϕ2π(n2-n1) ......(1)

The expression to calculate the second smallest value of Lis given as follows.

L=3λΔϕ2π(n2-n1)
03

(a) Calculate the smallest value of L  :

Calculate the smallest value of the L .

Substitute the given values into equation (1).

L=π×620×10-92π1.65-1.45=310×10-90.20=1550×10-9=1.55×10-6m

Hence, the smallest value of L is 1.55×10-6m

04

(b) Calculate the second smallest value of L  :

Calculate the smallest value of theL.

Substitute the given values into equation (1).

L=3π×620×10-92π1.65-1.45=930×10-90.20=4650×10-9=4.65×10-6m

Hence the second smallest value of L is 4.65×10-6m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig 35-59, an oil drop (n=1.20) floats on the surface of water (n=1.33) and is viewed from overhead when illuminated by sunlight shinning vertically downward and reflected vertically upward. (a) Are the outer (thinnest) regions of the drop bright or dark? The oil film displays several spectra of colors. (b) Move from the rim inward to the third blue band and using a wavelength of 475 nm for blue light, determine the film thickness there. (c) If the oil thickness increases, why do the colors gradually fade and then disappear?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3 (the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3 and r4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2andn3, the type.

Of interference, the thin-layer thickness L in nanometres, and the wavelength λ in nanometres of the light as measured in air.

Where λ is missing, give the wavelength that is in the visible range.

Where Lis missing, give the second least thickness or the third least thickness as indicated?

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2andn3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

A double-slit arrangement produces interference fringes for sodium light (λ=589nm)that have an angular separation of 3.50×10-3rad. For what wavelength would the angular separation be 10% greater?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3 (the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3 and r4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1, n2, and n3, the type of interference, the thin-layer thickness L in nanometers, and the wavelength λ in nanometers of the light as measured in air. Where λ is missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free