Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Light of wavelengthis used in a Michelson interferometer. Letx be the position of the movable mirror, withx=0when the arms have equal lengthsd2=d1. Write an expression for the intensity of the observed light as a function of , lettinglmbe the maximum intensity.

Short Answer

Expert verified

The expression for the intensity of observed light is I=Imcos22πxλ.

Step by step solution

01

Given in the question.

Let lmis the maximum intensity. The position of the mirror from the point at which d1=d2isx.

02

Definition of wave interference between two plane waves.

Assume that the two waves are in phase at the point P, then the relative phase changes along the x-axis. The phase difference at the point Q is given as:

Δθ=2πdλ=2πxsinθλ

Here,d=xsinθ

03

According to the question.

Let the beam splitting mechanism for x=0in two waves interfere constructively.

Eliminate the factor . The phase difference between two light paths is written as follows:

Δθ=22πxλ=4πxλ

04

The intensity of observed light. 

By Maul’s law, the intensity of plane-polarized light that passes through an analyzer varies as the square of the cosine of the angle between the plane of the two plane that is the polarizer and the transmission axes of the analyzer.

I=I0cos2Δθ2

Here, I0=Imis intensity of unpolarised light.

Use the above formula solve as follows:

I=Imcos2Δθ2I=Imcos22πxλ

The intensity IImas a function of xλis graphed as below:

From the figure, observe that the intensity of light is maximum atx=m2λ,m=0,1,2,...

From the figure, observe that the intensity of light is minimum atx=142m+1λ,m=0,1,2,...

Hence, the expression for the intensity of observed light is I=Imcos22πxλ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3andr4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

In Fig 35-59, an oil drop (n=1.20) floats on the surface of water (n=1.33) and is viewed from overhead when illuminated by sunlight shinning vertically downward and reflected vertically upward. (a) Are the outer (thinnest) regions of the drop bright or dark? The oil film displays several spectra of colors. (b) Move from the rim inward to the third blue band and using a wavelength of 475 nm for blue light, determine the film thickness there. (c) If the oil thickness increases, why do the colors gradually fade and then disappear?

In a double-slit experiment, the fourth-order maximum for a wavelength of 450 nm occurs at an angle of θ=90°. (a) What range of wavelengths in the visible range (400 nm to 700 nm) are not present in the third-order maxima? To eliminate all visible light in the fourth-order maximum, (b) should the slit separation be increased or decreased and (c) what least change is needed?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of and interfere, r3and r4here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3, the type of interference, the thin-layer thickness Lin nanometers, and the wavelength in nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Two rectangular glass plates (n=1.60) are in contact along one edge (fig-35-45) and are separated along the opposite edge . Light with a wavelength of 600 nm is incident perpendicularly onto the top plate. The air between the plates acts as a thin film. Nine dark fringes and eight bright fringes are observed from above the top plate. If the distance between the two plates along the separated edges is increased by 600 nm, how many dark fringes will there then be across the top plate.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free