Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A thin film of liquid is held in a horizontal circular ring, with air on both sides of the film. A beam of light at wavelength 550 nm is directed perpendicularly onto the film, and the intensity I of its reflection is monitored. Figure 35-47 gives intensity I as a function of time the horizontal scale is set by ts=20.0s. The intensity changes because of evaporation from the two sides of the film. Assume that the film is flat and has parallel sides, a radius of 1.80cm, and an index of refraction of 1.40. Also assume that the film’s volume decreases at a constant rate. Find that rate.

Short Answer

Expert verified

The rate is 1.67×10-11m3/s.

Step by step solution

01

Given data

Radius of circular film r=1.8cm

Index of refraction of film n2=1.4

Wavelength of light λ=550nm

02

Definition of thin film

The thin liquid film is a phase of small thickness, in which the two interfacial layers overlap to form a unified non-homogeneous structure of specific properties.

03

Concept used

In the figure at t=0, intensity is minimum and again at t=62s= 12s

it is minimum.

The change in time from one minimum to next minimum

Δt=12s - 0s

But we have condition for minima

2L=mλn2L=mλ2n2

Change in thickness from one minimum to next minimum is

ΔL=Δmλ2n2

Here, Δm=1

Therefore ΔL=λ2n2

04

Determine the thin film of liquid is held in a horizontal ring 

But change in volume Δv=πr2ΔL

(Since the film is circular)

ΔL=λ2n2

Rate of change of volume dvdt=πr2λ2n2Δt

Given radius of circular film r=1.8cm

=1.810-2m/cm=0.018m

Index of refraction of film n2=1.4

Wavelength of light

=550nm=550nm10-9m/nm=550×10-9

Rate of change of volume:

dvdt=π0.018m2550×10-9m21.412s=0.0166684×10-9m3/s=1.67×10-11m3/s

Therefore, the rate is 1.67×10-11m3/s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 35-45, a broad beam of monochromatic light is directed perpendicularly through two glass plates that are held together at one end to create a wedge of air between them. An observer intercepting light reflected from the wedge of air, which acts as a thin film, sees 4001 dark fringes along the length of the wedge. When the air between the plates is evacuated, only 4000 dark fringes are seen. Calculate to six significant figures the index of refraction of air from these data.

Figure 35-40 shows two isotropic point sources of light (S1and S2) that emit in phase at wavelength 400 nm and at the same amplitude. A detection point P is shown on an x-axis that extends through source S1. The phase difference ϕbetween the light arriving at point P from the two sources is to be measured as P is moved along the x axis from x=0 out to x=+.The results out to xs=10×10-7m are given in Fig. 35-41. On the way out to + , what is the greatest value of x at which the light arriving at from S1is exactly out of phase with the light arriving at P from S2?

The figure shows the design of a Texas arcade game, Four laser pistols are pointed toward the center of an array of plastic layers where a clay armadillo is the target. The indexes of refraction of the layers are n1=1.55,n2=1.70,n3=1.45,n4=1.60,n5=1.45,n6=1.61,n7=1.59,n8=1.70and n9=1.60. The layer thicknesses are either 2.00 mm or 4.00 mm, as drawn. What is the travel time through the layers for the laser burst from (a) pistol 1, (b) pistol 2, (c) pistol 3, and (d) pistol 4? (e) If the pistols are fired simultaneously, which laser burst hits the target first?

Light travels along the length of a 1500 nm-long nanostructure. When a peak of the wave is at one end of the nanostructure, is there a peak or a valley at the other end of the wavelength (a) 500nm and (b) 1000nm?

Figure 35-24a gives intensity lversus position x on the viewing screen for the central portion of a two-slit interference pattern. The other parts of the figure give phasor diagrams for the electric field components of the waves arriving at the screen from the two slits (as in Fig. 35-13a).Which numbered points on the screen bestcorrespond to which phasor diagram?

(a) Figure 1

(b) Figure 2

(c) Figure 3

(d) Figure 4

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free