Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A Newton’s rings apparatus is to be used to determine the radius of curvature of a lens . The radii of the nth and (n+20th)bright rings are found to be 0.162cm and 0.368cm, respectively, in light of wavelength 546nm. Calculate the radius of curvature of the lower surface of the lens.

Short Answer

Expert verified

The radius of the curvature of the lower surface of the lens is 1.0m.

Step by step solution

01

Given data

The radii ofnth=0.162cm

The radii of n+20=0.368cm

Wavelength λ=546nm

02

Definition of newton’s ring

Newton's ring is a phenomenon in which an interference pattern is created by the reflection of light between two surfaces; a spherical surface and an adjacent touching flat surface.

03

Determine the radius of the curvature 

The radius of curvature of the xth ring

Rx=0.162cm

For n+20thRn+20=0.368cm

Let the radius of the curvature of the lower surface of the lens be R.

The value of R is given by as

R=Rn+202-Rx220×λR=0.368×10-2m2-0.162×10-2m220×546×10-9mR=0.9998mR=1.0m

Hence, the radius of the curvature of the lower surface of the lens is 1.0m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 35-34, a light ray is an incident at angle θ1=50°on a series of five transparent layers with parallel boundaries. For layers 1 and 3 , L1=20μm , L2=25μm, n1=1.6and n3=1.45. (a) At what angle does the light emerge back into air at the right? (b) How much time does the light take to travel through layer 3?

In Fig. 35-4, assume that the two light waves, of wavelength 620nm in air, are initially out of phase by π rad. The indexes of refraction of the media are n1=1.45 andn2=1.65 . What are the (a) smallest and (b) second smallest value of Lthat will put the waves exactly in phase once they pass through the two media?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3andr4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

In the double-slit experiment of Fig. 35-10, the electric fields of the waves arriving at point P are given by

E1=(2.00μV/m)sin[1.26×1015t]E2=(2.00μV/m)sin[1.26×1015t+39.6rad]

Where, timetis in seconds. (a) What is the amplitude of the resultant electric field at point P ? (b) What is the ratio of the intensity IPat point P to the intensity Icenat the center of the interference pattern? (c) Describe where point P is in the interference pattern by giving the maximum or minimum on which it lies, or the maximum and minimum between which it lies. In a phasor diagram of the electric fields, (d) at what rate would the phasors rotate around the origin and (e) what is the angle between the phasors?

In Figure 35-50, two isotropic point sources S1and S2emit light in phase at wavelength λand at the same amplitude. The sources are separated by distance d=6.00λon an x axis. A viewing screen is at distance D=20.0λfrom S2and parallel to the y axis. The figure shows two rays reaching point P on the screen, at height yp. (a) At what value of do the rays have the minimum possible phase difference? (b) What multiple of λgives that minimum phase difference? (c) At what value of ypdo the rays have the maximum possible phase difference? What multiple of λgives (d) that maximum phase difference and (e) the phase difference when yp=d? (f) When yp=d, is the resulting intensity at point P maximum, minimum, intermediate but closer to maximum, or intermediate but closer to minimum?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free