Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3andr4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refractionn1,n2andn3the type of interference, the thin-layer thicknessLin nanometers, and the wavelengthλin nanometers of the light as measured in air. Whereλis missing, give the wavelength that is in the visible range. WhereLis missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The wavelength with maximum intensity of transmitted light is 409nm.

Step by step solution

01

Given Data:

  • The refractive index of first medium isn1=1.40.
  • The refractive index of the thin film isn2=1.46.
  • The refractive index of the third medium is n1=1.75.
  • The thickness of the layer is L=210nm.
02

Interference of light through thin films:

Light that is incident normally on thin films is reflected from both the front and back surfaces, causing interference of the reflected light. When constructive interference happens, it produces bright reflected light, and when entirely destructive interference occurs, it produces a dark region.

03

Define the wavelength:

The interference of the transmitted rays is similar to the interference of the reflection of light. Here in this case, as n1<n2and n2<n3the two transmitted rays have 180phase angle difference.

Therefore, the condition for constructive interference is,

2L=m+12λmaxn2λmax=4Ln22m+1

Calculating the wavelength for first few orders number as below.

For m=0:

λ1=4210nm1.4620+1=1226nm

For m=1:

role="math" localid="1663097372852" λ2=4210nm1.4621+1=409nm

For m=2:

λ3=4210nm1.4622+1=245nm

As 409nmlies in visible range, hence the wavelength with maximum intensity of transmitted light is role="math" localid="1663097462853" 409nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the double-slit experiment of Fig. 35-10, the electric fields of the waves arriving at point P are given by

E1=(2.00μV/m)sin[1.26×1015t]E2=(2.00μV/m)sin[1.26×1015t+39.6rad]

Where, timetis in seconds. (a) What is the amplitude of the resultant electric field at point P ? (b) What is the ratio of the intensity IPat point P to the intensity Icenat the center of the interference pattern? (c) Describe where point P is in the interference pattern by giving the maximum or minimum on which it lies, or the maximum and minimum between which it lies. In a phasor diagram of the electric fields, (d) at what rate would the phasors rotate around the origin and (e) what is the angle between the phasors?

In a double-slit arrangement the slits are separated by a distance equal to 100 times the wavelength of the light passing through the slits. (a)What is the angular separation in radians between the central maximum and an adjacent maximum? (b) What is the distance between these maxima on a screen 50 cm from the slits?

In the two-slit experiment of Fig.35-10, let angle θbe 20.00C, the slit separation be 4.24μm, and the wavelength be λ=500nm. (a) What multiple of λgives the phase difference between the waves of rays r1and r2when they arrive at point Pon the distant screen? (b) What is the phase difference in radians? (c) Determine where in the interference pattern point P lies by giving the maximum or minimum on which it lies, or the maximum and minimum between which it lies?

A thin flake of mica (n = 1.58) is used to cover one slit of a double-slit interference arrangement. The central point on the viewing screen is now occupied by what had been the seventh bright side fringe (m = 7). If λ=550nm , what is the thickness of the mica?

In Figure 35-50, two isotropic point sources S1and S2emit light in phase at wavelength λand at the same amplitude. The sources are separated by distance d=6.00λon an x axis. A viewing screen is at distance D=20.0λfrom S2and parallel to the y axis. The figure shows two rays reaching point P on the screen, at height yp. (a) At what value of do the rays have the minimum possible phase difference? (b) What multiple of λgives that minimum phase difference? (c) At what value of ypdo the rays have the maximum possible phase difference? What multiple of λgives (d) that maximum phase difference and (e) the phase difference when yp=d? (f) When yp=d, is the resulting intensity at point P maximum, minimum, intermediate but closer to maximum, or intermediate but closer to minimum?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free