Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3and r4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The thickness of the thin layer is 161nm.

Step by step solution

01

Given Data.

  • The refractive index of first medium is n1=1.68.
  • The refractive index of the thin film is n2=1.59.
  • The refractive index of the third medium is n3=1.50.
  • The maximum intensity occurs at λmax=342nm.
02

Interference of light through thin films:

Light that is incident normally on thin films is reflected from both the front and back surfaces, causing interference of the reflected light. When constructive interference happens, it produces bright reflected light, and when entirely destructive interference occurs, it produces a dark region.

03

Define the wavelength:

The interference of the transmitted rays is similar to the interference of the reflection of light. Here in this case, as n1>n2and n2>n3 the two transmitted rays have 180phase angle difference.

Therefore, the condition for constructive interference is,

role="math" localid="1663092034628" 2L=m+12λmaxn2L=2m+1λmax4n2

The 2nd least thickness means order number m=1for which the thickness is,

role="math" localid="1663092058636" L=21+1342nm41.59=161nm

Hence, the thickness of the thin layer is 161nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the double-slit experiment of Fig. 35-10, the electric fields of the waves arriving at point P are given by

E1=(2.00μV/m)sin[1.26×1015t]E2=(2.00μV/m)sin[1.26×1015t+39.6rad]

Where, timetis in seconds. (a) What is the amplitude of the resultant electric field at point P ? (b) What is the ratio of the intensity IPat point P to the intensity Icenat the center of the interference pattern? (c) Describe where point P is in the interference pattern by giving the maximum or minimum on which it lies, or the maximum and minimum between which it lies. In a phasor diagram of the electric fields, (d) at what rate would the phasors rotate around the origin and (e) what is the angle between the phasors?

Figure 35-27a shows the cross-section of a vertical thin film whose width increases downward because gravitation causes slumping. Figure 35-27b is a face-on view of the film, showing four bright (red) interference fringes that result when the film is illuminated with a perpendicular beam of red light. Points in the cross section corresponding to the bright fringes are labeled. In terms of the wavelength of the light inside the film, what is the difference in film thickness between (a) points a and b and (b) points b and d?

In Fig. 35-44, a broad beam of light of wavelength 630 nm is incident at 90° on a thin, wedge-shaped film with index of refraction 1.50. Transmission gives 10 bright and 9 dark fringes along the film’s length. What is the left-to-right change in film thickness?

The rhinestones in costume jewellery are glass with index of refraction 1.50. To make them more reflective, they are often coated with a layer of silicon monoxide of index of refraction 2.00.What is the minimum coating thickness needed to ensure that light of wavelength 560nm and of perpendicular incidence will be reflected from the two surfaces of the coating with fully constructive interference?

The speed of yellow Light (from a sodium lamp) in a certain liquid is measured to be1.92×108ms . What is the index of refraction of this liquid for the Light?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free