Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How much faster, in meters per second, does light travel in sapphire than in diamond? See Table 33-1.

Short Answer

Expert verified

The difference in speed is 4.55×107ms.

Step by step solution

01

Definition of refractive index.

The refractive index of any medium signifies the bending ability of light in that perticular medium. Hence, the medium is more refractive, and the bending of the light in that medium will also be more.

02

Determine of change in speed of the light with the change of the medium.

From the table 33-1, we get the refractive index of diamond and sapphire as:

The refractive index of diamond isnd=2.42

The refractive index of sapphire isns=1.77

The formulae for calculating the change in velocity Δvwith the change in the medium are:

Δv=vs-vd=c1ns-1nd

Here, vsis the speed of light in the sapphire medium and vdthe speed of light in the diamond medium.

C is the speed of light in the vaccum.

Therefore,

Δv=3×10811.77-12.42=4.55×107ms

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 35-45, a broad beam of light of wavelength 620 nm is sent directly downward through the top plate of a pair of glass plates touching at the left end. The air between the plates acts as a thin film, and an interference pattern can be seen from above the plates. Initially, a dark fringe lies at the left end, a bright fringe lies at the right end, and nine dark fringes lie between those two end fringes. The plates are then very gradually squeezed together at a constant rate to decrease the angle between them. As a result, the fringe at the right side changes between being bright to being dark every 15.0 s.

(a) At what rate is the spacing between the plates at the right end being changed?

(b) By how much has the spacing there changed when both left and right ends have a dark fringe and there are five dark fringes between them?

In Fig. 35-39, two isotropic point sources S1 and S2 emit light in phase at wavelength λ and at the same amplitude. The sources are separated by distance 2d=6λ. They lie on an axis that is parallel to an x axis, which runs along a viewing screen at distance D=20.0λ. The origin lies on the perpendicular bisector between the sources. The figure shows two rays reaching point P on the screen, at positionxP. (a) At what value of xPdo the rays have the minimum possible phase difference? (b) What multiple ofλ gives that minimum phase difference? (c) At what value ofxPdo the rays have the maximum possible phase difference? What multiple of λ gives (d) that maximum phase difference and (e) the phase difference when xP=6λ ? (f) When xP=6λ, is the resulting intensity at point P maximum, minimum, intermediate but closer to maximum, or intermediate but closer to minimum?

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2, and n3, the type of interference, the thin-layer thickness in nanometres, and the wavelength λ in nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

A thin film of acetone n=1.25coats a thick glass platen=1.50White light is incident normal to the film. In the reflections, fully destructive interference occurs at 600nmand fully constructive interference at700nm. Calculate the thickness of the acetone film.

The figure shows the design of a Texas arcade game, Four laser pistols are pointed toward the center of an array of plastic layers where a clay armadillo is the target. The indexes of refraction of the layers are n1=1.55,n2=1.70,n3=1.45,n4=1.60,n5=1.45,n6=1.61,n7=1.59,n8=1.70and n9=1.60. The layer thicknesses are either 2.00 mm or 4.00 mm, as drawn. What is the travel time through the layers for the laser burst from (a) pistol 1, (b) pistol 2, (c) pistol 3, and (d) pistol 4? (e) If the pistols are fired simultaneously, which laser burst hits the target first?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free