Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of and interfere,r3and r4here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The wavelength with minimum intensity of transmitted light is 680nm.

Step by step solution

01

Given Data.

  • The refractive index of first medium isn1=1.55.
  • The refractive index of the thin film isn2=1.60
  • The refractive index of the third mediumn3=1.33
  • The thickness of the layer is L=285nm.
02

Interference of light through thin films.

Light that is incident normally on thin films is reflected from both the front and back surfaces, causing interference of the reflected light. When constructive interference happens, it produces bright reflected light, and when entirely destructive interference occurs, it produces a dark region.

The interference of the transmitted rays is similar to the interference of the reflection of light. Here in this case, the phase difference between the transmitted rays is zero. Therefore, the condition for destructive interference is

2L=m+12λn2λ=4Ln22m+1

Calculating the wavelength for first few orders number,

m=0;λ1=4285nm1.6020+1=1824nmm=1;λ2=4285nm1.6021+1=608nmm=2;λ3=4285nm1.6022+1=365nm


As 680nmlies in visible range, hence the wavelength with minimum intensity of transmitted light is 680nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a double-slit experiment, the fourth-order maximum for a wavelength of 450 nm occurs at an angle of θ=90°. (a) What range of wavelengths in the visible range (400 nm to 700 nm) are not present in the third-order maxima? To eliminate all visible light in the fourth-order maximum, (b) should the slit separation be increased or decreased and (c) what least change is needed?

A plane wave of monochromatic light is incident normally on a uniform thin film of oil that covers a glass plate. The wavelength of the source can be varied continuously. Fully destructive interference of the reflected light is observed for wavelengths of 500nmand 700nmand for no wavelengths in between. If the index of refraction of the oil is 1.30and that of the glass is 1.50, find the thickness of the oil film.

A double-slit arrangement produces interference fringes for sodium light(λ=589nm)that are 0.200Capart. What is the angular separation if the arrangement is immersed in water (n=1.33)?

In Fig. 35-35, two light rays go through different paths by reflecting from the various flat surfaces shown.The light waves have a wavelength of 420.0 nm and are initially in phase. What are the (a) smallest and (b) second smallest value of distance L that will put the waves exactly out of phase as they emerge from the region?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3andr4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free