Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1,n2and n3, the type of interference, the thin-layer thickness in nanometres, and the wavelength λ in nanometres of the light as measured in air. Where is missing, give the wavelength that is in the visible range. Where is missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The wavelength of the reflected light is 409nm.

Step by step solution

01

Interference in thin films:

The bright colors reflected from thin oil on water and soap bubbles are the result of light interference. Due to the constructive interference of light reflected from the front and back surfaces of the thin film, these bright colors can be seen.

For a perpendicular incident beam, the maximum intensity of light from the thin film satisfies the condition:

2L=m+12λn2m=0,1,2,...(Maxima—bright film in the air)

2L=mλn2m=1,2,3,..(Minima)

Where,λis the wavelength of the light in air, Lis its thickness, and role="math" localid="1663009742868" n2is the film’s refractive index.

02

Determine the wavelength of light:

Here, in this case, light travels in a medium with n1=1.40and incident on the thin layer whose refractive index is n1=1.60and the reflected light has180°phase change as the light is reflected off the denser medium. And then, the refracted light gets reflected of the back surface n3=1.75while traveling through the film. This results in180°phase change. The total phase difference between r1and r2is still zero. As a result, the condition for destructive interference or minimum intensity is

2L=m+12λn2λ=4Ln22m+1(Destructive)

The wavelength for the first few orders is as below.

For:role="math" localid="1663008879425" m=0

λ=4210nm1.4620+1=1226nm

For:m=1

λ=4210nm1.4621+1=409nm

As409nm is in the visible range, the wavelength of the light is 409nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We wish to coat flat glass (n = 1.50) with a transparent material (n = 1.25) so that reflection of light at wavelength 600 nm is eliminated by interference. What minimum thickness can the coating have to do this?

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where localid="1663142040666" Lis missing, give the second least thickness or the third least thickness as indicated

If mirror M2in a Michelson interferometer (fig 35-21) is moved through 0.233mm, a shift of 792 bright fringes occurs. What is the wavelength of the light producing the fringe pattern?

Two waves of the same frequency have amplitudes 1.00 and 2.00. They interfere at a point where their phase difference is 60.0°. What is the resultant amplitude?

Figure 35-25 shows two sources s1 and s2 that emit radio waves of wavelengthλin all directions. The sources are exactly in phase and are separated by a distance equal to 1.5λ . The vertical broken line is the perpendicular bisector of the distance between the sources.

(a) If we start at the indicated start point and travel along path 1, does the interference produce a maximum all along the path, a minimum all along the path, or alternating maxima and minima? Repeat for

(b) path 2 (along an axis through the sources) and

(c) path 3 (along a perpendicular to that axis).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free