Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1 and r2 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1,n2, andlocalid="1663665154700" n3, the type of interference, the thin-layer thickness L in nanometres, and the wavelength λ in nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The 2nd least thickness of the thin layer 248nm.

Step by step solution

01

Interference in thin films:

Light interference is the cause of the vivid colors that thin oil on water and soap bubbles reflect. These vivid hues can be seen because of the light reflection from the thin film's front and rear surfaces' constructive interference.

For a perpendicular incident beam, the maximum intensity of light from the thin film satisfies the condition:

2L=m+12λn2   m=0,1,2,...(Maxima—bright film in the air)

2L=mλn2   m=1,2,3,.. (Minima)

Where, λ is the wavelength of the light in air, L is its thickness, and n2 is the film’s refractive index.

02

Determine the 2nd least thickness of the thin layer:

Here, in this case, light travels in a medium with n1=1.40 and incident on the thin layer whose refractive index is n2=1.46 and the reflected light has 180° phase change as the light is reflected off the denser medium. And then, the refracted light gets reflected of the back surface n3=1.75 while traveling through the film. This results in 180° phase change. The total phase difference between r1 and r2 is still zero. As a result, the condition for destructive interference or minimum intensity is

2L=m+12λn2 (Destructive)

The 2nd least (m=1) thickness of the thin layer is

L=1+12482nm2(1.46)=248nm

Hence, the 2nd least thickness of the thin layer is248nm .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Light of wavelengthis used in a Michelson interferometer. Letx be the position of the movable mirror, withx=0when the arms have equal lengthsd2=d1. Write an expression for the intensity of the observed light as a function of , lettinglmbe the maximum intensity.

A thin film with index of refraction n=1.40 is placed in one arm of a Michelson interferometer, perpendicular to the optical path. If this causes a shift of 7.0 bright fringes of the pattern produced by light of wavelength 589nm, what is the film thickness?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3 (the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3 and r4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2andn3, the type.

Of interference, the thin-layer thickness L in nanometres, and the wavelength λ in nanometres of the light as measured in air.

Where λ is missing, give the wavelength that is in the visible range.

Where Lis missing, give the second least thickness or the third least thickness as indicated?

A thin film suspended in air is 0.410 μmthick and is illuminated with white light incident perpendicularly on its surface. The index of refraction of the film is 1.50. At what wavelength will visible light that is reflected from the two surfaces of the film undergo fully constructive interference?

In Fig. 35-45, a broad beam of light of wavelength 683 nm is sent directly downward through the top plate of a pair of glass plates. The plates are 120 mm long, touch at the left end, and are separated by 48.0μm at the right end. The air between the plates acts as a thin film. How many bright fringes will be seen by an observer looking down through the top plate?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free