Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 35-23, three pulses of light— a, b, and c—of the same wavelength are sent through layers of plastic having the given indexes of refraction and along the paths indicated. Rank the pulses according to their travel time through the plastic layers, greatest first.

Short Answer

Expert verified

The first wave takes the largest time to travel through the plastic layers followed by the third wave and the second wave.

Step by step solution

01

Given data:

Refractive index of the medium through which pulse a passes is1.6.

Refractive index of the medium through which pulsebpasses is1.5.

Refractive index of the medium through which pulse c passes is1.55 .

02

Dependence of velocity of light on the refractive index:

vThe velocity of light in a medium having a refractive indexcis given by

v=cn .....(1)

Here, cis the velocity of light in a vacuum, is the velocity of light in the substance,and n in the index of refraction.

03

Determining the time taken by the three pulses to cross the layers:

From equation (1), the velocity of pulse a in the first layer is

Va=c1.6

Let the thickness of each layer bed . Thus, the time taken by the first pulse to cross the layer is

ta=dc/1.6=1.6dc

Similarly, the time taken by the second pulse to cross the layer is,

tb=1.5dc

And the time taken by third pulse to cross the layer is,

tc=1.55dc

Hence, the rank of the pulses according to their travel time through the plastic layers, greatest first ista>tc>tb .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 35-39, two isotropic point sources S1 and S2 emit light in phase at wavelength λ and at the same amplitude. The sources are separated by distance 2d=6λ. They lie on an axis that is parallel to an x axis, which runs along a viewing screen at distance D=20.0λ. The origin lies on the perpendicular bisector between the sources. The figure shows two rays reaching point P on the screen, at positionxP. (a) At what value of xPdo the rays have the minimum possible phase difference? (b) What multiple ofλ gives that minimum phase difference? (c) At what value ofxPdo the rays have the maximum possible phase difference? What multiple of λ gives (d) that maximum phase difference and (e) the phase difference when xP=6λ ? (f) When xP=6λ, is the resulting intensity at point P maximum, minimum, intermediate but closer to maximum, or intermediate but closer to minimum?

In Fig. 35-31, a light wave along ray r1reflects once from a mirror and a light wave along ray r2reflects twice from that same mirror and once from a tiny mirror at distance Lfrom the bigger mirror. (Neglect the slight tilt of the rays.) The waves have wavelength 620 nm and are initially in phase. (a) What is the smallest value of Lthat puts the final light waves exactly out of phase? (b) With the tiny mirror initially at that value of L, how far must it be moved away from the bigger mirror to again put the final waves out of phase?

In Fig. 35-4, assume that two waves of light in air, of wavelength 400nm, are initially in phase. One travels through a glass layer of index of refraction n1=1.60and thickness L. The other travels through an equally thick plastic layer of index of refraction n2=1.50. (a) What is the smallest value Lshould have if the waves are to end up with a phase difference of 5.65 rad? (b) If the waves arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive?

Two rectangular glass plates (n=1.60) are in contact along one edge (fig-35-45) and are separated along the opposite edge . Light with a wavelength of 600 nm is incident perpendicularly onto the top plate. The air between the plates acts as a thin film. Nine dark fringes and eight bright fringes are observed from above the top plate. If the distance between the two plates along the separated edges is increased by 600 nm, how many dark fringes will there then be across the top plate.

The reflection of perpendicularly incident white light by a soap film in the air has an interference maximum at 600nmand a minimum at role="math" localid="1663024492960" 450nm, with no minimum in between. If n=1.33for the film, what is the film thickness, assumed uniform?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free