Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The thickness of the thin layer is478nm

Step by step solution

01

Given Data

  • The refractive index of first medium isn1=1.55
  • The refractive index of the thin film is n2=1.60
  • The refractive index of the third medium n3=1.33
  • The maximum intensity occurs at wavelength role="math" localid="1663150278048" λ=612nm.
02

Significance of interference in thin films

Bright colours reflected from thin oil on water and soap bubbles are a consequence of light interference. Due to the constructive interference of light reflected from the front and back surfaces of the thin film, these bright colours can be seen. For a perpendicular incident beam, the maximum intensity of light from the thin film satisfies the condition:

2L=m+12λn2m=0,1,2,... (Maxima—bright film in the air)

where λis the wavelength of the light in air, Lis its thickness, and n2is the film’s refractive index.

03

Determining the 3rd least thickness for this arrangement of materials.

Here, in this case, light travels in medium with n1=1.55and incident on the film whose refractive index is n2=1.60. And then, the light gets reflected of the third surface n3=1.33 while travelling through the film. As a result, the condition for constructive interference or maximum intensity is

2L=m+12λ612n2 (Constructive)

The 3rdleast thickness is

2L=2+12612nm1.60L=5612nm41.60=478nm

Hence the thickness of the thin layer is 478nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where localid="1663142040666" Lis missing, give the second least thickness or the third least thickness as indicated

Two rectangular glass plates (n=1.60) are in contact along one edge (fig-35-45) and are separated along the opposite edge . Light with a wavelength of 600 nm is incident perpendicularly onto the top plate. The air between the plates acts as a thin film. Nine dark fringes and eight bright fringes are observed from above the top plate. If the distance between the two plates along the separated edges is increased by 600 nm, how many dark fringes will there then be across the top plate.

A 600nm-thick soap film n=1.40in air is illuminated with white light in a direction perpendicular to the film. For how many different wavelengths in the 300to 700nm range is there (a) fully constructive interference and (b) fully destructive interference in the reflected light?

If the distance between the first and tenth minima of a double-slit pattern is 18.0 mm and the slits are separated by 0.150 mm with the screen 50.0 cm from the slits, what is the wavelength of the light used?

Find the slit separation of a double-slit arrangement that will produce interference fringes0.018radapart on a distant screen when the light has wavelengthλ=589nm.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free