Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2andn3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The thickness of the thin layer is 329nm.

Step by step solution

01

Given data

  • The refractive index of first medium is n1=1.50.
  • The refractive index of the thin film is n2=1.34
  • The refractive index of the third medium n3=1.42
  • The maximum intensity occurs at wavelength λ587=587nm.
02

Interference in thin films

Bright colours reflected from thin oil on water and soap bubbles are a consequence of light interference. Due to the constructive interference of light reflected from the front and back surfaces of the thin film, these bright colours can be seen. For a perpendicular incident beam, the maximum intensity of light from the thin film satisfies the condition:

2L=m+12λn2m=0,1,2,... (Maxima—bright film in the air)

Where λis the wavelength of the light in air, Lis its thickness, and n2is the film’s refractiveindex.

03

Determining the 2nd least thickness for this arrangement of materials.

Here, in this case, light travels in medium with n1=1.50and incident on the film whose refractive index is n2=1.34.And then, the light gets reflected of the third surface n3=1.42while travelling through the film.As a result, the condition for constructive interference or maximum intensity is

2L=m+12λ587n2 (Constructive)

The 2nd least thickness which m=1is

role="math" localid="1663149600515" 2L=1+12587nm1.34L=3587nm41.34=329nm

Hence the thickness of the thin layer is 329nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as rayr3(the light does not reflect inside material 2) andr4(the light reflects twice inside material 2). The waves ofr3and r4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Whereλis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Monochromatic green light, of wavelength 500 nm, illuminates two parallel narrow slits 7.70 mm apart. Calculate the angular deviation ( θin Fig. 35-10) of the third-order (m=3)bright fringe (a) in radians and (b) in degrees.

A camera lens with index of refraction greater than 1.30 is coated with a thin transparent film of index of refraction 1.25 to eliminate by interference the reflection of light at wavelength λ that is incident perpendicularly on the lens. What multiple of λgives the minimum film thickness needed?

Light travels along the length of a 1500 nm-long nanostructure. When a peak of the wave is at one end of the nanostructure, is there a peak or a valley at the other end of the wavelength (a) 500nm and (b) 1000nm?

In Fig. 35-33, two light pulses are sent through layers of plastic with thicknesses of either Lor 2Las shown and indexes of refraction n1=1.55, n2=1.70, n3=1.60, n4=1.45,n5=1.59 , n6=1.65 and n7=1.50. (a) Which pulse travels through the plastic in less time? (b) What multiple of Lcgives the difference in the traversal times of the pulses?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free