Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, localid="1663139751503" n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Short Answer

Expert verified

The thickness of the thin layer is 161nm.

Step by step solution

01

Given Data

  • The refractive index of first medium is n1=1.68.
  • The refractive index of the thin film isn2=1.59
  • The refractive index of the third medium n3=1.50
  • The minimum intensity occurs at wavelength λ=342nm.
02

Interference in thin films

Bright colours reflected from thin oil on water and soap bubbles are a consequence of light interference. Due to the constructive interference of light reflected from the front and back surfaces of the thin film, these bright colours can be seen. For a perpendicular incident beam, the maximum intensity of light from the thin film satisfies the condition:

2L=m+12λn2m=0,1,2,...(Maximabrightfilmintheair)

where λis the wavelength of the light in air, L is its thickness, and n2 is the film’s refractive index.

03

Determining the 2nd least thickness for this arrangement of materials.

Here, in this case, light travels in medium with n1=1.68and incident on the film whose refractive index is n2=1.59And then, the light gets reflected of the third surface n3=1.50while travelling through the film. A minimum intensity is observed at λ=342nmand thickness of the film is to be determined at 2nd order of intensity which m=1in this case. As a result, the condition for destructive interference or minimum intensity is

2L=m+12λ342n2 (Destructive)

The 2nd least thickness is

2L=1+12342nm1.59L=3342nm41.59=161nm

Hence the thickness of the thin layer is 161nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

The figure shows the design of a Texas arcade game, Four laser pistols are pointed toward the center of an array of plastic layers where a clay armadillo is the target. The indexes of refraction of the layers are n1=1.55,n2=1.70,n3=1.45,n4=1.60,n5=1.45,n6=1.61,n7=1.59,n8=1.70and n9=1.60. The layer thicknesses are either 2.00 mm or 4.00 mm, as drawn. What is the travel time through the layers for the laser burst from (a) pistol 1, (b) pistol 2, (c) pistol 3, and (d) pistol 4? (e) If the pistols are fired simultaneously, which laser burst hits the target first?

Two waves of light in air, of wavelength λ=600.0nm, are initially in phase. They then both travel through a layer of plastic as shown in Fig. 35-36, with L1=4.00μm, L2=3.50μm, n1=1.40, n2=1.60and. (a) What multiple of λgives their phase difference after they both have emerged from the layers? (b) If the waves later arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive,or intermediate but closer to fully destructive?

In Fig. 35-45, a broad beam of light of wavelength 620 nm is sent directly downward through the top plate of a pair of glass plates touching at the left end. The air between the plates acts as a thin film, and an interference pattern can be seen from above the plates. Initially, a dark fringe lies at the left end, a bright fringe lies at the right end, and nine dark fringes lie between those two end fringes. The plates are then very gradually squeezed together at a constant rate to decrease the angle between them. As a result, the fringe at the right side changes between being bright to being dark every 15.0 s.

(a) At what rate is the spacing between the plates at the right end being changed?

(b) By how much has the spacing there changed when both left and right ends have a dark fringe and there are five dark fringes between them?

A double-slit arrangement produces interference fringes for sodium light (λ=589nm)that have an angular separation of 3.50×10-3rad. For what wavelength would the angular separation be 10% greater?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free