Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 35-22 shows two light rays that are initially exactly in phase and that reflect from several glass surfaces. Neglect the slight slant in the path of the light inthe second arrangement.

(a) What is the path length difference of the rays?

In wavelengthsλ,

(b) what should that path length difference equal if the rays are to be exactly out of phase when they emerge, and

(c) what is the smallest value of that will allow that final phase difference?

Short Answer

Expert verified

(a) The path difference of the two rays introduced in the mirror setup is 2d.

(b) The path difference should be equal to λ2 for the rays to be exactly out of phase when they emerge from the mirror setup.

(c) The smallest value ofd that will allow that final phasedifference is λ4.

Step by step solution

01

Given data

Two light rays each of wavelength λare reflected in multiple mirrors each at a distance" width="9" height="19" role="math">

The path difference between two rays is the actual difference in length of the paths of the two rays. For the two rays to be out of phase the path difference should be half of the wavelength of the rays.

02

Step 3:Determining the path difference and the value of  d

(a) From the figure the left ray travels a path equal to5dinside the mirror setup. The right ray travels a path equal to3dinside the mirror setup. Hence their path difference is

5d-3d=2d

Thus, their path difference is 2d.

(b) For the two rays to be out of phase after exiting the mirror setup, their path difference should be equal toλ2 .

(c) The value of that will allow this phase difference is obtained by

2d=λ2d=λ4

Thus, the required value of is λ4.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 35-31, a light wave along ray r1reflects once from a mirror and a light wave along ray r2reflects twice from that same mirror and once from a tiny mirror at distance Lfrom the bigger mirror. (Neglect the slight tilt of the rays.) The waves have wavelength λand are initially exactly out of phase. What are the (a) smallest (b) second smallest, and (c) third smallest values of Lλthat result in the final waves being exactly in phase?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as rayr3(the light does not reflect inside material 2) andr4(the light reflects twice inside material 2). The waves ofr3and r4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Whereλis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

In Fig. 35-35, two light rays go through different paths by reflecting from the various flat surfaces shown.The light waves have a wavelength of 420.0 nm and are initially in phase. What are the (a) smallest and (b) second smallest value of distance L that will put the waves exactly out of phase as they emerge from the region?

A double-slit arrangement produces interference fringes for sodium light(λ=589nm)that are 0.200Capart. What is the angular separation if the arrangement is immersed in water (n=1.33)?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3and r4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free