Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Light of wavelength 624 nm is incident perpendicularly on a soap film (n = 1.33) suspended in air. What are the (a) least and (b) second least thicknesses of the film for which the reflections from the film undergo fully constructive interference?

Short Answer

Expert verified

The least thickness is 117 nm, and the 2nd least thickness is 352 nm.

Step by step solution

01

Interference in thin films

Bright colors reflected from thin oil on water and soap bubbles are a consequence of light interference. Due to the constructive interference of light reflected from the front and back surfaces of the thin film, these bright colors can be seen. For a perpendicular incident beam, the maximum intensity of light from the thin film satisfies the condition:

2L=(m+12)λn2   m=0,1,2,...(Maxima—bright film in the air)

where λ is the wavelength of the light in air, L is its thickness, and n2 is the film’s refraction index.

02

Thickness of the soap film

The least and the 2nd least thickness are associated with m=0,1the order of maximum intensity. The thickness corresponding to this order of maxima is

For m=0;

Lo=m+12λ2n2=0+12624nm2(1.33)=117nm

For m=1;

L1=m+12λ2n2=1+12624nm2(1.33)=352nm

Thus, the least thickness is 117 nm, and the 2nd least thickness is 352 nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, localid="1663139751503" n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Find the sum y of the following quantities: y1=10sinωt and y2=8.0sin(ωt+30°)

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3andr4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

In two experiments, light is to be sent along the two paths shown in Fig. 35-35 by reflecting it from the various flat surfaces shown. In the first experiment, rays 1 and2 are initially in phase and have a wavelength of 620.0nm. In the second experiment, rays 1 and2 are initially in phase and have a wavelength of 496.0nm . What least value of distance L is required such that the 620.0nmwaves emerge from the region exactly in phase but the 496.0nmwaves emerge exactly out of phase?

The reflection of perpendicularly incident white light by a soap film in the air has an interference maximum at 600nmand a minimum at role="math" localid="1663024492960" 450nm, with no minimum in between. If n=1.33for the film, what is the film thickness, assumed uniform?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free