Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The rhinestones in costume jewellery are glass with index of refraction 1.50. To make them more reflective, they are often coated with a layer of silicon monoxide of index of refraction 2.00.What is the minimum coating thickness needed to ensure that light of wavelength 560nm and of perpendicular incidence will be reflected from the two surfaces of the coating with fully constructive interference?

Short Answer

Expert verified

The minimum thickness of coating with fully constructive interference is 70nm.

Step by step solution

01

Identification of given data

The index of refraction of silicon monoxide layer isnc=2.00

The index of refraction for glass is ng=1.50.

The wavelength of light is λ=560nm.

02

Understanding the concept

The index of refraction is the ratio of the speed of light in medium to speed of light in vacuum

03

Determination of minimum thickness of coating with fully constructive interference

The minimum thickness of coating with fully constructive interference is given as:

t=m+12λ2nc

Here, mis order of fringe and its value for minimum thickness for constructive interference is 0.

Substitute all the values in equation.

role="math" localid="1663135130327" t=0+12560nm22=70nm

Therefore, the minimum thickness of coating with fully constructive interference is 70nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two rectangular glass plates (n=1.60) are in contact along one edge (fig-35-45) and are separated along the opposite edge . Light with a wavelength of 600 nm is incident perpendicularly onto the top plate. The air between the plates acts as a thin film. Nine dark fringes and eight bright fringes are observed from above the top plate. If the distance between the two plates along the separated edges is increased by 600 nm, how many dark fringes will there then be across the top plate.

Two parallel slits are illuminated with monochromatic light of wavelength 500 nm. An interference pattern is formed on a screen some distance from the slits, and the fourth dark band is located 1.68 cm from the central bright band on the screen. (a) What is the path length difference corresponding to the fourth dark band? (b) What is the distance on the screen between the central bright band and the first bright band on either side of the central band? (hint: The angle to the fourth dark band and the angle to the first band are small enough that tanθsinθ)

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

In Fig. 35-45, a broad beam of monochromatic light is directed perpendicularly through two glass plates that are held together at one end to create a wedge of air between them. An observer intercepting light reflected from the wedge of air, which acts as a thin film, sees 4001 dark fringes along the length of the wedge. When the air between the plates is evacuated, only 4000 dark fringes are seen. Calculate to six significant figures the index of refraction of air from these data.

Suppose that the two waves in Fig. 35-4 have a wavelength λ=500nmin air. What multiple of λgives their phase difference when they emerge if (a) n1=1.50, n2=16and L=8.50μm; (b) n1=1.62, n2=1.72, and L=8.50μm; and (c) n1=1.59, n2=1.79, and L=3.25μm? (d) Suppose that in each of these three situations, the waves arrive at a common point (with the same amplitude) after emerging. Rank the situations according to the brightness the waves produce at the common point.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free