Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 35-40 shows two isotropic point sources of light (S1and S2) that emit in phase at wavelength 400 nm and at the same amplitude. A detection point P is shown on an x-axis that extends through source S1. The phase difference ϕbetween the light arriving at point P from the two sources is to be measured as P is moved along the x axis from x=0 out to x=+.The results out to xs=10×10-7m are given in Fig. 35-41. On the way out to + , what is the greatest value of x at which the light arriving at from S1is exactly out of phase with the light arriving at P from S2?

Short Answer

Expert verified

The maximum value of x for which the light arriving from sources S1 and S2 to point out of phase is 3500nm.

Step by step solution

01

Identification of given data

The phase difference of fringe pattern varies with the path difference. For minimum phase difference path difference should be minimum and vice versa.

The separation is xs=10×10-7m.

The wavelength of the light is λ=400nmλ=400nmλ=400nm.

02

Determination of greatest value of x for which the light arriving to point P from both sources is out of phase

The path difference between positions x=0 and x is given as:

Δx=d2+x2-x

Here, d is the separation between sources S1and S2. Its value from the figure 35-40 is 3λ.

The phase difference is given as:

ϕ0-ϕs=2πλΔx

Here, ϕ0and ϕs are the phase angle for positions x=0and x=xs, which are 6πand 5πfrom the given graph in figure 35-41.

Substitute all the values in equation.

6π-5π=2πλd2+x2-x3λ2+x2-x=λ29λ2+x2=x+λ229λ2+x2=λ24+2λ2x+x2

λx=9λ2-λ24λx=9λ2-λ24

λx=9λ2-λ24

x=35λ4=35400nm4=3500nm

Therefore, the maximum value of x for which the light arriving from sources S1 and S2to point out of phase is 3500nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A thin film suspended in air is 0.410 μmthick and is illuminated with white light incident perpendicularly on its surface. The index of refraction of the film is 1.50. At what wavelength will visible light that is reflected from the two surfaces of the film undergo fully constructive interference?

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of and interfere,r3and r4here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

The lens in a Newton’s rings experiment (see problem 75) has diameter 20 mm and radius of curvature R=5.0m. For A=589nm in air, how many bright rings are produced with the setup (a) in air and
(b) immersed in water (n=1.33)?

Figure 35-25 shows two sources s1 and s2 that emit radio waves of wavelengthλin all directions. The sources are exactly in phase and are separated by a distance equal to 1.5λ . The vertical broken line is the perpendicular bisector of the distance between the sources.

(a) If we start at the indicated start point and travel along path 1, does the interference produce a maximum all along the path, a minimum all along the path, or alternating maxima and minima? Repeat for

(b) path 2 (along an axis through the sources) and

(c) path 3 (along a perpendicular to that axis).

In a phasor diagram for any point on the viewing screen for the two slit experiment in Fig 35-10, the resultant wave phasor rotates60.0°in 2.50×10-16s. What is the wavelength?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free