Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 35-40, two isotropic point sources of light (S1 and S2) are separated by distance 2.70μmalong a y axis and emit in phase at wavelength 900 nm and at the same amplitude. A light detector is located at point P at coordinate xPon the x axis. What is the greatest value of xP at which the detected light is minimum due to destructive interference?

Short Answer

Expert verified

The maximum value of point P position for destructive interference is 7.8μm.

Step by step solution

01

Identification of given data

The separation between both sources is d=2.70mm

The wavelength of the light is λ=900nm

The phase difference of fringe pattern varies with the path difference. For minimum phase difference path difference should be minimum and vice versa.

02

Determination of maximum value for position of point P for destructive interference

The maximum value of point P position for destructive interference is given as:

xP=d22m+1λ-2m+1λ4

Here,m is the order of fringe for minimum intensities at various positions and its minimum value for minimum possible path difference is zero.

Substitute all the values in equation.

xP=2.70μm10-6m1μm220+1900nm10-9m1nm-20+1900nm10-9m1nm4xP=8.1×10-6m-0.225×10-6mxP=7.8×10-6m1μm10-6mxP=7.8μm

Therefore, the maximum value of point P position for destructive interference is 7.8μm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A thin film of acetone n=1.25coats a thick glass platen=1.50White light is incident normal to the film. In the reflections, fully destructive interference occurs at 600nmand fully constructive interference at700nm. Calculate the thickness of the acetone film.

In Fig. 35-45, a broad beam of light of wavelength 683 nm is sent directly downward through the top plate of a pair of glass plates. The plates are 120 mm long, touch at the left end, and are separated by 48.0μm at the right end. The air between the plates acts as a thin film. How many bright fringes will be seen by an observer looking down through the top plate?

In Fig. 35-4, assume that the two light waves, of wavelength 620nm in air, are initially out of phase by π rad. The indexes of refraction of the media are n1=1.45 andn2=1.65 . What are the (a) smallest and (b) second smallest value of Lthat will put the waves exactly in phase once they pass through the two media?

Figure 35-25 shows two sources s1 and s2 that emit radio waves of wavelengthλin all directions. The sources are exactly in phase and are separated by a distance equal to 1.5λ . The vertical broken line is the perpendicular bisector of the distance between the sources.

(a) If we start at the indicated start point and travel along path 1, does the interference produce a maximum all along the path, a minimum all along the path, or alternating maxima and minima? Repeat for

(b) path 2 (along an axis through the sources) and

(c) path 3 (along a perpendicular to that axis).

We wish to coat flat glass (n = 1.50) with a transparent material (n = 1.25) so that reflection of light at wavelength 600 nm is eliminated by interference. What minimum thickness can the coating have to do this?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free