Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 35-37, two radio frequency point sources S1and S2, separated by distance d=2.0m, are radiating in phase with λ=0.50m. A detector moves in a large circular path around the two sources in a plane containing them. How many maxima does it detect?

Short Answer

Expert verified

The total number of the maxima is 16.

Step by step solution

01

Write the given data from the question

The distance between the slits, d=2m.

The wavelength, λ=0.50m.

02

Determine the formulas to calculate the number of the maxima detect by the detector

The condition for the maxima in Young’s experiment is given as follows.

dsinθ=mλ …… (1)

Here,d is the distance between the slits, λis the wavelength, mis the order, andθis the angular separation.

03

Calculate the number of the maxima detect by the detector

Calculate the number of the maxima.

Substitute 0.50mfor λand 2m for d into equation (1).

2sinθ=m×0.50sinθ=12×m×0.50sinθ=14×m

Now,

sinθ1m41.

The value of m can be negative as well as positive. Therefore, m will have -4,-3,-2,-1,0,+1,+2,+3,+4.

For each of the value there is two values of the θ.

Therefore, one value for -900Cand other for +900C.

Hence, the total number of the maxima is 16.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 35-57 shows an optical fiber in which a central platic core of index of refractionn1=1.58-is surrounded by a plastic sheath of index of refractionn2=1.53. Light can travel along different paths within the central core, leading to different travel times through the fiber, resulting in information loss. Consider light that travels directly along the central axis of the fiber and light that is repeatedly reflected at the critical angle along the core-sheath interface, reflecting from side to side as it travels down the central core. If the fiber length is 300 m, what is the difference in the travel times along these two routes?

A thin film, with a thickness of272.7nmand with air on both sides, is illuminated with a beam of white light. The beam is perpendicular to the film and consists of the full range of wavelengths for the visible spectrum. In the light reflected by the film, light with a wavelength of600nmundergoes fully constructive interference. At what wavelength does the reflected light undergo fully destructive interference? (Hint: You must make a reasonable assumption about the index of refraction.

Figure 35-28 shows four situations in which light reflects perpendicularly from a thin film of thickness L sandwiched between much thicker materials. The indexes of refraction are given. In which situations does Eq. 35-36 correspond to the reflections yielding maxima (that is, a bright film).

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2and n3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

White light is sent downward onto a horizontal thin film that is sandwiched between two materials. The indexes of refraction are 1.80for the top material, 1.70for the thin film, and 1.50for the bottom material. The film thickness is5×10-7m . Of the visible wavelengths (400 to 700nm ) that result in fully constructive interference at an observer above the film, which is the (a) longer and (b) shorter wavelength? The materials and film are then heated so that the film thickness increases. (c) Does the light resulting in fully constructive interference shift toward longer or shorter wavelengths?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free