Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 35-35, two light rays go through different paths by reflecting from the various flat surfaces shown.The light waves have a wavelength of 420.0 nm and are initially in phase. What are the (a) smallest and (b) second smallest value of distance L that will put the waves exactly out of phase as they emerge from the region?

Short Answer

Expert verified

a. The least possible length that will result in destructive interference is 52.50 nm.

b. The second least possible length that will result in destructive interference is 157.5 nm.

Step by step solution

01

Definition of reflection.

An electromagnetic wave incident over an obstacle with a certain angle reflects that wave maintaining the same angle for a flat surface. This reflected wave is called a reflection of the incident wave.

02

Determination of the smallest value of distance that will put the waves out of phase.

a.

In figure 35.35, we can conclude that ray 1 travels an extra distance of 4Lmore than ray 2.

Therefore to get the least possible length that will result in destructive interference, it is required to set the extra distance equated to half of the wavelength.

4L=λ2L=λ8.

Here it is given that the wavelength λ is 420 nm.

Therefore,

L=420×10-98=52.50nm.

03

Determination of the second smallest value of distance that will put the waves out of phase.

b.

In figure 35.35, we can conclude that ray 1 travels an extra distance of 4Lmore than ray 2.

Therefore to get the second least possible length that will result in destructive interference, it is required to set the extra distance equated 32of the wavelength.

4L=32λL=38λL=38×420nmL=157.5nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 35-34, a light ray is an incident at angle θ1=50°on a series of five transparent layers with parallel boundaries. For layers 1 and 3 , L1=20μm , L2=25μm, n1=1.6and n3=1.45. (a) At what angle does the light emerge back into air at the right? (b) How much time does the light take to travel through layer 3?

In Fig. 35-44, a broad beam of light of wavelength 630 nm is incident at 90° on a thin, wedge-shaped film with index of refraction 1.50. Transmission gives 10 bright and 9 dark fringes along the film’s length. What is the left-to-right change in film thickness?

In the double-slit experiment of Fig. 35-10, the electric fields of the waves arriving at point P are given by

E1=(2.00μV/m)sin[1.26×1015t]E2=(2.00μV/m)sin[1.26×1015t+39.6rad]

Where, timetis in seconds. (a) What is the amplitude of the resultant electric field at point P ? (b) What is the ratio of the intensity IPat point P to the intensity Icenat the center of the interference pattern? (c) Describe where point P is in the interference pattern by giving the maximum or minimum on which it lies, or the maximum and minimum between which it lies. In a phasor diagram of the electric fields, (d) at what rate would the phasors rotate around the origin and (e) what is the angle between the phasors?

The figure shows the design of a Texas arcade game, Four laser pistols are pointed toward the center of an array of plastic layers where a clay armadillo is the target. The indexes of refraction of the layers are n1=1.55,n2=1.70,n3=1.45,n4=1.60,n5=1.45,n6=1.61,n7=1.59,n8=1.70and n9=1.60. The layer thicknesses are either 2.00 mm or 4.00 mm, as drawn. What is the travel time through the layers for the laser burst from (a) pistol 1, (b) pistol 2, (c) pistol 3, and (d) pistol 4? (e) If the pistols are fired simultaneously, which laser burst hits the target first?

In a double-slit arrangement the slits are separated by a distance equal to 100 times the wavelength of the light passing through the slits. (a)What is the angular separation in radians between the central maximum and an adjacent maximum? (b) What is the distance between these maxima on a screen 50 cm from the slits?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free