Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a phasor diagram for any point on the viewing screen for the two slit experiment in Fig 35-10, the resultant wave phasor rotates60.0°in 2.50×10-16s. What is the wavelength?

Short Answer

Expert verified

Thus, the wavelength of light is 450nm.

Step by step solution

01

According to the question.

It is given that

Δϕ=60°=π3rad

The figure according to the question is:

The phasors rotate with constant angular velocity

ω=ΔϕΔt=π3×2.5×10-16s=4.19×1015rad/s

02

The wavelength of light in medium. 

Since, light waves travelling in a medium (air) where the wave speed is approximately c, then kc=ω,wherek=2πλ, which leads to

λ=2πcω=2π×3×108m/s4.19×1015rad/s=4.498×10-7m=450nm

Hence, the wavelength of light is, 450nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The figure shows the design of a Texas arcade game, Four laser pistols are pointed toward the center of an array of plastic layers where a clay armadillo is the target. The indexes of refraction of the layers are n1=1.55,n2=1.70,n3=1.45,n4=1.60,n5=1.45,n6=1.61,n7=1.59,n8=1.70and n9=1.60. The layer thicknesses are either 2.00 mm or 4.00 mm, as drawn. What is the travel time through the layers for the laser burst from (a) pistol 1, (b) pistol 2, (c) pistol 3, and (d) pistol 4? (e) If the pistols are fired simultaneously, which laser burst hits the target first?

Figure 35-29 shows the transmission of light through a thin film in the air by a perpendicular beam (tilted in the figure for clarity). (a) Did rayr3undergo a phase shift due to reflection? (b) In wavelengths, what is the reflection phase shift for rayr4? (c) If the film thickness is L, what is the path length difference between raysr3andr4?

Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1and r2interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35- 2 refers to the indexes of refraction n1, n2andn3, the type of interference, the thin-layer thickness Lin nanometres, and the wavelength λin nanometres of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where Lis missing, give the second least thickness or the third least thickness as indicated.

Figure 35-27a shows the cross-section of a vertical thin film whose width increases downward because gravitation causes slumping. Figure 35-27b is a face-on view of the film, showing four bright (red) interference fringes that result when the film is illuminated with a perpendicular beam of red light. Points in the cross section corresponding to the bright fringes are labeled. In terms of the wavelength of the light inside the film, what is the difference in film thickness between (a) points a and b and (b) points b and d?

In Fig. 35-37, two radio frequency point sources S1and S2, separated by distance d=2.0m, are radiating in phase with λ=0.50m. A detector moves in a large circular path around the two sources in a plane containing them. How many maxima does it detect?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free