Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A thin film suspended in air is 0.410 μmthick and is illuminated with white light incident perpendicularly on its surface. The index of refraction of the film is 1.50. At what wavelength will visible light that is reflected from the two surfaces of the film undergo fully constructive interference?

Short Answer

Expert verified

Thus, the wavelength of visible light is 492nm.

Step by step solution

01

According to the question.

The formula for the constructive interference:

2n2L=(m+12)λ

Here,λis wavelength of light in air/vacuum.

02

The wavelength of visible light. 

Use the above formula as follows:

λ=2n2Lm+12=21.50410nmm+12=1230nmm+12

Where m=0,1,2,...The only value of mwhich, when substituted into equation above, would yield a wavelength that within the visible light range ism=1 .

Therefore, the wavelength is:

λ=1230nm1+12=492nm

Hence, the wavelength of visible light is492nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Transmission through thin layers. In Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r3(the light does not reflect inside material 2) and r4(the light reflects twice inside material 2). The waves of r3and r4interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n1,n2and n3the type of interference, the thin-layer thickness Lin nanometers, and the wavelength λin nanometers of the light as measured in air. Where λis missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated.

The reflection of perpendicularly incident white light by a soap film in the air has an interference maximum at 600nmand a minimum at role="math" localid="1663024492960" 450nm, with no minimum in between. If n=1.33for the film, what is the film thickness, assumed uniform?

Light travels along the length of a 1500 nm-long nanostructure. When a peak of the wave is at one end of the nanostructure, is there a peak or a valley at the other end of the wavelength (a) 500nm and (b) 1000nm?

Find the sum y of the following quantities: y1=10sinωt and y2=8.0sin(ωt+30°)

Ocean waves moving at a speed of 4.0 m/s are approaching a beach at angle θ1=30°to the normal, as shown from above in Fig. 35-55. Suppose the water depth changes abruptly at a certain distance from the beach and the wave speed there drops to 3.0 m/s. (a) Close to the beach, what is the angle θ2between the direction of wave motion and the normal? (Assume the same law of refraction as for light.) (b) Explain why most waves come in normal to a shore even though at large distances they approach at a variety of angles.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free