Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two solenoids are part of the spark coil of an automobile. When the current in one solenoid falls from 6.0Ato zero in 2.5ms, an emf of 30 kVis induced in the other solenoid. What is the mutual inductance M of the solenoids?

Short Answer

Expert verified

Short Answer is Missing in the Doucument

Step by step solution

01

Given

ε=30kV=30×103V

didt=6.0A2.5ms=6.0A2.5×10-3s

02

Understanding the concept

We have the formula for the induced emf in terms of the mutual inductance in the solenoid and we can rearrange the formula to get the value for the mutual inductance.

ε=M/|di/dt|

03

Calculate the mutual inductance M of the solenoids 

We have,

ε=M/|di/dt|M=εdidtM=30×10362.5×10-3M=12.5H13H

Mutual inductance of the coil is 13H

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A coil with an inductance of2.0 H and a resistance of 10Ωis suddenly connected to an ideal battery with ε=100V. At 0.10 safter the connection is made, (a) what is the rate at which energy is being stored in the magnetic field? (b) what is the rate at which thermal energy is appearing in the resistance? (c) what is the rate at which energy is being delivered by the battery?

What must be the magnitude of a uniform electric field if it is to have the same energy density as that possessed by a 0.50 T magnetic field?

Figure shows a rod of length L = 10.0 cm that is forced to move at constant speed v = 5.0 m/s along horizontal rails. The rod, rails, and connecting strip at the right form a conducting loop. The rod has resistance 0.400Ω; the rest of the loop has negligible resistance. A current i = 100 Athrough the long straight wire at distance a = 10.0 mm from the loop sets up a (non-uniform) magnetic field through the loop. (a) Find the emf. (b) Find the current induced in the loop. c) At what rate is thermal energy generated in the rod? (d) What is the magnitude of the force that must be applied to the rod to make it move at constant speed?(e) At what rate does this force do work on the rod?

For the circuit of Figure, assume that ε=10.0V,R=6.70Ω,andL=5.50H. The ideal battery is connected at timet=0. (a) How much energy is delivered by the battery during the first 2.00 s? (b) How much of this energy is stored in the magnetic field of the inductor? (c) How much of this energy is dissipated in the resistor?

A small loop of area 6.8 mm2is placed inside a long solenoid that hasand carries a sinusoidally varying current i of amplitude1.28 A and angular frequency rad/s.The central axes of the loop and solenoid coincide. What is the amplitude of the emf induced in the loop?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free