Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two coils are at fixed locations. When coil 1 has no current and the current in coil 2 increases at the rate 15.0 A/s, the emf in coil 1 is 25.0 mV. (a) What is their mutual inductance? (b) When coil 2 has no current and coil 1 has a current of 3.60A, what is the flux linkage in coil 2?

Short Answer

Expert verified

a)M=1.67×10-3H

b)ϕ21=6.0×10-3Wb

Step by step solution

01

Given

Rate of change of current,

di2dt=15.0A/sε1=25.0mV=25.0×10-3VI1=3.6A

02

Understanding the concept

We have the formula for the mutual inductance induced in the coil, we also have enough information given, so we can calculate the mutual inductance. We also have enough information along with the formula for flux linkage, so we can find the required answer.

Formula:

ϕ=MIN

M=εdi/dt

03

(a) Calculate the mutual inductance

We have,

M=εdidt

So, mutual inductance in coil 1 will become,

M=εdidtM=25.0×10-315M=1.67+10-3H

04

(b) Calculate the flux linkage in coil 2 when coil 2 has no current and coil 1 has a current of 3.60 A

We have,

ϕ=MIN

Here, N=1

ϕ21=MI1Nϕ21=1.67×10-3×3.61ϕ21=6.0×10-3Wb

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A wooden toroidal core with a square cross section has an inner radius of10 cm and an outer radius of 12 cm. It is wound with one layer of wire (of diameter1.0 mmand resistance per meter 0.020Ω/m). (a) What is the inductance? (b) What is the inductive time constant of the resulting toroid? Ignore the thickness of the insulation on the wire.

A square wire loop with 2.00msides is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in Figure. The loop contains an ideal battery with emfε=20.0V. If the magnitude of the field varies with time according toB=0.0420-0.870t, with B in Tesla and t in seconds, (a)what is the net emf in the circuit?(b)what is the direction of the (net) current around the loop?

A coil with an inductance of2.0 H and a resistance of 10Ωis suddenly connected to an ideal battery with ε=100V. At 0.10 safter the connection is made, (a) what is the rate at which energy is being stored in the magnetic field? (b) what is the rate at which thermal energy is appearing in the resistance? (c) what is the rate at which energy is being delivered by the battery?

Figure 30-29 shows three circuits with identical batteries, inductors, and resistors. Rank the circuits, greatest first, according to the current through the resistor labeled R (a) long after the switch is closed, (b) just after the switch is reopened a long time later, and (c) long after it is reopened

Figure 30-30 gives the variation with time of the potential difference VRacross a resistor in three circuits wired as shown in Fig. 30-16. The circuits contain the same resistance Rand emf εbut differ in the inductance L . Rank the circuits according to the value of L, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free