Chapter 30: Q66P (page 900)
A circular loop of wire 50 mmin radius carries a current of 100 A. (a) Find the magnetic field strength. (b) Find the energy density at the center of the loop
Chapter 30: Q66P (page 900)
A circular loop of wire 50 mmin radius carries a current of 100 A. (a) Find the magnetic field strength. (b) Find the energy density at the center of the loop
All the tools & learning materials you need for study success - in one app.
Get started for freeFigure shows a copper strip of width W = 16.0 cmthat has been bent to form a shape that consists of a tube of radius R = 1.8 cmplus two parallel flat extensions. Current i = 35 mAis distributed uniformly across the width so that the tube is effectively a one-turn solenoid. Assume that the magnetic field outside the tube is negligible and the field inside the tube is uniform. (a) What is the magnetic field magnitude inside the tube? (b) What is the inductance of the tube (excluding the flat extensions)?
The figure shows two parallel loops of wire having a common axis. The smaller loop (radius r) is above the larger loop (radius R) by a distancex>>R. Consequently, the magnetic field due to the counterclockwise current i in the larger loop is nearly uniform throughout the smaller loop. Suppose that x is increasing at the constant rate. (a)Find an expression for the magnetic flux through the area of the smaller loop as a function of x. (b)In the smaller loop, find an expression for the induced emf. (c)Find the direction of the induced current.
A small loop of area 6.8 is placed inside a long solenoid that hasand carries a sinusoidally varying current i of amplitude1.28 A and angular frequency rad/s.The central axes of the loop and solenoid coincide. What is the amplitude of the emf induced in the loop?
A coil with 150turns has a magnetic flux of through each turn when the current is 2.00mA . (a) What is the inductance of the coil? What are the (b) inductance and (c) flux through each turn when the current is increased to i = 4.00mA ? (d) What is the maximum emf across the coil when the current through it is given by i= (3.00mA)cos(377 t) , with t in seconds?
Two coils are at fixed locations. When coil 1 has no current and the current in coil 2 increases at the rate 15.0 A/s, the emf in coil 1 is 25.0 mV. (a) What is their mutual inductance? (b) When coil 2 has no current and coil 1 has a current of 3.60A, what is the flux linkage in coil 2?
What do you think about this solution?
We value your feedback to improve our textbook solutions.