Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Att=0, a battery is connected to a series arrangement of a resistor and an inductor. At what multiple of the inductive time constant will the energy stored in the inductor’s magnetic field be 0.500its steady-state value?

Short Answer

Expert verified

t=1.23τ

Step by step solution

01

Given

Energy stored in the inductor’s magnetic field is 0.500 of its steady state value.

02

Understanding the concept

Here we have to use the formula for inductor’s magnetic field and current through RL circuit to find the ratio of time and inductive time constant.

Formula:

i=i01-e-tτUB=0.5Li-2

03

Calculate At what multiple of the inductive time constant will the energy stored in the inductor’s magnetic field be 0.500 its steady-state value 

The current through the RL circuit is asfollows:

i=i01-e-tτ

The energy due to inductance magnetic field is

UB=0.5Li2

For steady state,

Ub'=0.5Li02

Now we are given that

Ub=0.5Ub'1-e-tτ2=0.51-e-tτ=0.5e-tτ=1-0.5tτ=-In1-0.5tτ=1.23t=1.23τ

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The current i through a 4.6 Hinductor varies with time t as shown by the graph of Figure, where the vertical axis scale is set by is=8.0A and the horizontal axis scale is set by ts=6.0ms . The inductor has a resistance of12Ω.(a) Find the magnitude of the induced emf ε during time intervals 0 to 2 ms. (b) Find the magnitude of the induced emf ε during time intervals 2 ms to 5 ms. (c) Find the magnitude of the induced emf εduring time intervals 5 ms to 6 ms. (Ignore the behavior at the ends of the intervals.)

The figure shows two parallel loops of wire having a common axis. The smaller loop (radius r) is above the larger loop (radius R) by a distancex>>R. Consequently, the magnetic field due to the counterclockwise current i in the larger loop is nearly uniform throughout the smaller loop. Suppose that x is increasing at the constant ratedxdt=v. (a)Find an expression for the magnetic flux through the area of the smaller loop as a function of x. (b)In the smaller loop, find an expression for the induced emf. (c)Find the direction of the induced current.

Figure shows a rod of length L = 10.0 cm that is forced to move at constant speed v = 5.0 m/s along horizontal rails. The rod, rails, and connecting strip at the right form a conducting loop. The rod has resistance 0.400Ω; the rest of the loop has negligible resistance. A current i = 100 Athrough the long straight wire at distance a = 10.0 mm from the loop sets up a (non-uniform) magnetic field through the loop. (a) Find the emf. (b) Find the current induced in the loop. c) At what rate is thermal energy generated in the rod? (d) What is the magnitude of the force that must be applied to the rod to make it move at constant speed?(e) At what rate does this force do work on the rod?

A circular loop of wire 50 mmin radius carries a current of 100 A. (a) Find the magnetic field strength. (b) Find the energy density at the center of the loop

Figure (a) shows, in cross section, two wires that are straight, parallel, and very long. The ratio i1/i2of the current carried by wire 1 to that carried by wire 2 is13. Wire 1 is fixed in place. Wire 2 can be moved along the positive side of the x-axis so as to change the magnetic energy density uB set up by the two currents at the origin. Figure (b) gives uB as a function of the position x of wire 2. The curve has an asymptote ofuB=1.96nJ/m3asx, and the horizontal axis scale is set byxs=60.0cm. What is the value of (a) i1 and (b) i2?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free