Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Figure,R=15Ω,L=5.0Hthe ideal battery has ε=10V, and the fuse in the upper branch is an ideal3.0 A fuse. It has zero resistance as long as the current through it remains less than3.0 A . If the current reaches3.0 A , the fuse “blows” and thereafter has infinite resistance. Switch S is closed at timet = 0 . (a) When does the fuse blow? (Hint: Equation 30-41 does not apply. Rethink Eq. 30-39.) (b) Sketch a graph of the current i through the inductor as a function of time. Mark the time at which the fuse blows.

Short Answer

Expert verified

a) Time at which the fuse blows is t = 1.5 s

b) The sketch of graph of the current through the inductor as a function of time and the time at which fuse blows is given below.

Step by step solution

01

Given

i) Resistance is R=15Ω

ii) Inductance is L=5.0H

iii) Battery emf is ε=10V

iv) Current through the fuse is i=3.0A

02

Understanding the concept

We use the concept of loop rule for the give circuit. Applying the loop rule, we can find the time at which the fuse blows. We can sketch the graph of the current through the inductor as a function of time.

Formulae:

For the given loop,

V=0

03

(a) Calculate the time at which the fuse blows.

Time at which the fuse blows:

We can apply the loop rule.

ε-Ldidt-iR=0ε=Ldidt+iR

Before the fuse blows, the current through the resistor is zero, so we can write

role="math" localid="1661427781225" ε=Ldidtdt=Lεdi

Integrating on both sides, we get

dt=Lεdit=Lεi

Plugging the values, we get

t=5.0103.0t=1.5s

04

(b) Sketch the graph of the current through the inductor as a function of time and mark the time at which the fuse blows:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 30-72a shows a rectangular conducting loop of resistance R=0.020Ω,heightH=1.5cm,andlengthD=2.5cm, height , and length being pulled at constant speed through two regions of uniform magnetic field. Figure 30-72b gives the current i induced in the loop as a function of the position x of the right side of the loop. The vertical axis scale is set by isis=3.0mA. For example, a current equal to is is induced clockwise as the loop enters region 1. What are the (a) magnitude and (b) direction (into or out of the page) of the magnetic field in region 1? What are the (c) magnitude and (d) direction of the magnetic field in region 2?

In Figure, a wire forms a closed circular loop, of radius R = 2.0mand resistance4.0Ω. The circle is centered on a long straight wire; at time t = 0, the current in the long straight wire is 5.0 Arightward. Thereafter, the current changes according toi=5.0A-(2.0As2)t2. (The straight wire is insulated; so there is no electrical contact between it and the wire of the loop.) What is the magnitude of the current induced in the loop at times t > 0?

Question: An electric generator contains a coil of 100 turnsof wire, each forming a rectangular loop 50.0cm to 30.0cm. The coil is placed entirely in a uniform magnetic field with magnitude B = 3.50 Tand withBinitially perpendicular to the coil’s plane. What is the maximum value of the emf produced when the coil is spun at 1000 rev/min about an axis perpendicular toB?

In Figure (a), a uniform magnetic field increases in magnitude with time t as given by Figure (b), where the vertical axis scale is set by Bs=9.0mTand the horizontal scale is set by ts=3.0sA circular conducting loop of area 8.0×10-4m2lies in the field, in the plane of the page. The amount of charge q passing point A on the loop is given in Figure (c) as a function of t, with the vertical axis scale set by qs=3.0s and the horizontal axis scale again set by localid="1661854094654" ts=3.0s. What is the loop’s resistance?

Suppose the emf of the battery in the circuit shown in Figure varies with time t so that the current is given by i(t) = 3.0 +5.0 t , where i is in amperes and t is in seconds. Take R=4.0ΩandL=5.0H, and find an expression for the battery emf as a function of t. (Hint: Apply the loop rule.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free