Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Inductors in series. Two inductors L1 and L2 are connected in series and are separated by a large distance so that the magnetic field of one cannot affect the other.(a)Show that the equivalent inductance is given by

Leq=L1+L2

(Hint: Review the derivations for resistors in series and capacitors in series. Which is similar here?) (b) What is the generalization of (a) for N inductors in series?

Short Answer

Expert verified

a)Leq=L1+L2

b)Leq=n=1nLn

Step by step solution

01

Given

i) L1- Inductance of inductor 1.

ii) L2- Inductance of inductor 2.

iii) Leq- Equivalent inductance of series connection.

iv) Hint: Review the derivation for resistors in series and capacitors in series.

02

Understanding the concept

Net voltage across the series connection of inductors is the sum of voltages across each inductor.

Formulae:

Net voltage for series connection of inductors:

V=V1+V2V1-voltageacrossL1V2-voltageacrossL2

03

Show that the equivalent inductance is given by Leq=L1+L2

For series connection, the current is the same for each inductor.

V=V1+V2LeqI=L1I+L2I

Hence,

Leq=L1+L2

04

(b) Find the generalization of (a) for   conductors in series

Equivalent inductance fornumbers of inductors in series is

Leq=L1+L2+L3++Ln

Generalization oftheabove formula is

Leq=n=1nLn

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A long solenoid has a diameter of 12.0 cm.When a current i exists in its windings, a uniform magnetic field of magnitude B = 30.0 mTis produced in its interior. By decreasing i, the field is caused to decrease at the rate of 6.50mTs.(a) Calculate the magnitude of the induced electric field 2.20 cmfrom the axis of the solenoid.

(b) Calculate the magnitude of the induced electric field 8.20 cmfrom the axis of the solenoid.

A loop antenna of area2.00cm2and resistance 5.21 mis perpendicular to a uniform magnetic field of magnitude 17.0 mT. The field magnitude drops to zero in 2.96 ms. How much thermal energy is produced in the loop by the change in field?

The current i through a 4.6 Hinductor varies with time t as shown by the graph of Figure, where the vertical axis scale is set by is=8.0A and the horizontal axis scale is set by ts=6.0ms . The inductor has a resistance of12Ω.(a) Find the magnitude of the induced emf ε during time intervals 0 to 2 ms. (b) Find the magnitude of the induced emf ε during time intervals 2 ms to 5 ms. (c) Find the magnitude of the induced emf εduring time intervals 5 ms to 6 ms. (Ignore the behavior at the ends of the intervals.)

Switch S in Fig. 30-63 is closed at time t = 0, initiating the buildup of current in the L = 15.0 mHinductor and the R = 20.0Ωresistor. At what time is the emf across the inductor equal to the potential difference across the resistor?

In Figure, a wire forms a closed circular loop, of radius R = 2.0mand resistance4.0Ω. The circle is centered on a long straight wire; at time t = 0, the current in the long straight wire is 5.0 Arightward. Thereafter, the current changes according toi=5.0A-(2.0As2)t2. (The straight wire is insulated; so there is no electrical contact between it and the wire of the loop.) What is the magnitude of the current induced in the loop at times t > 0?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free