Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At a given instant the current and self-induced emf in an inductor are directed as indicated in Figure. (a) Is the current increasing or decreasing? (b) The induced emf is 17 V, and the rate of change of the current is 25 KA/s; find the inductance.

Short Answer

Expert verified
  1. Rate of change of the current,

didt=25.0kA/s=25×103A/s

b. Induced emf, o,=17.0 V

Step by step solution

01

Understanding the concept

We can use Faraday’s law of electromagnetic induction and the definition of inductance to find the inductance of the coil.

Formula:

o,=-dϕBdt

ϕB=Li

02

(a) Find out if the is current increasing or decreasing 

At a given instant self-induced emf and current are directed towards the right of the page

So, the inductor will oppose the change in current, therefore current will be decreasing.

03

(b) Calculate the inductance

We have,

o,=-dϕBdt=-ddtLi=-Ldidt

Now taking the magnitude of above equation we get

L=o,didtL=17.025×103L=0.68×10-3H=6.8×10-4H

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure shows two circular regions R1 and R2 with radii r1=20.0cmandr2=30.0cm. In R1 there is a uniform magnetic field of magnitudeB1=50.0mT directed into the page, and in R2 there is a uniform magnetic field of magnitude B1=75.0mTdirected out of the page (ignore fringing). Both fields are decreasing at the rate of 8.50 mT/s. (a) Calculate E.dsfor path 1.(b) Calculate E.dsfor path 2.(c) Calculate E.dsfor path 3.

A rectangular loop ( area=0.15m2) turns in a uniform magnetic field, B=0.20 T.When the angle between the field and the normal to the plane of the loop is ττ2radand increasing at0.60 rad/s, what emf is induced in the loop?

A square wire loop 20 cmon a side, with resistance 20 mΩ , has its plane normal to a uniform magnetic field of magnitude B = 2.0 T . If you pull two opposite sides of the loop away from each other, the other two sides automatically draw toward each other, reducing the area enclosed by the loop. If the area is reduced to zero in timet=0.20s ,(a)What is the average emf?(b)What is the average current induced in the loop duringt'?

Figure 30-25 shows a circular region in which a decreasing uniform magnetic field is directed out of the page, as well as four concentric circular paths. Rank the paths according to the magnitude of E.dSevaluated along them, greatest first.

In Figure,R=15Ω,L=5.0Hthe ideal battery has ε=10V, and the fuse in the upper branch is an ideal3.0 A fuse. It has zero resistance as long as the current through it remains less than3.0 A . If the current reaches3.0 A , the fuse “blows” and thereafter has infinite resistance. Switch S is closed at timet = 0 . (a) When does the fuse blow? (Hint: Equation 30-41 does not apply. Rethink Eq. 30-39.) (b) Sketch a graph of the current i through the inductor as a function of time. Mark the time at which the fuse blows.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free