Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A12 Hinductor carries a current of2.0 A. At what rate must the current be changed to produce a60 Vemf in the inductor?

Short Answer

Expert verified

didt=-5.0A/s

Step by step solution

01

Given

  1. Inductance of inductor, L=12.0H
  2. Current through inductor,i=2.0A
  3. Emf induced, ε=60V
02

Understanding the concept

We can use Faraday’s law of electromagnetic induction and the definition of inductance to find the rate of change of current through the inductor.

Formula:

ε=-dϕBdt

ϕB=Li

03

Calculate at what rate must the current be changed to produce a emf in the inductor

We have

ε=-dϕBdt=-ddtLi

As the inductance is fixed for a given inductor, then

ε=-dϕBdt=-Ldidt

So using the above equation we get

didt=-εL=6012.0=- 5.0A/s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

:Inductors in parallel. Two inductors L1 and L2 are connected in parallel and separated by a large distance so that the magnetic field of one cannot affect the other. (a)Show that the equivalent inductance is given by

1Leq=1L2+1L2

(Hint: Review the derivations for resistors in parallel and capacitors in parallel. Which is similar here?) (b) What is the generalization of (a) for N inductors in parallel?

Figures 30-32 give four situations in which we pull rectangular wire loops out of identical magnetic fields page) at the same constant speed. The loops have edge lengths of either L or 2L, as drawn. Rank the situations according to (a) the magnitude of the force required of us and (b) the rate at which energy is transferred from us to the thermal energy of the loop greatest first.

A rectangular coil of N turns and of length a and width b is rotated at frequency f in a uniform magnetic field, as indicated in Figure. The coil is connected to co-rotating cylinders, against which metal brushes slide to make contact. (a) Show that the emf induced in the coil is given (as a function of time t) byε=2ττfNabsin(2ττft)=ε0sin(2ττft). This is the principle of the commercial alternating-current generator. (b) What value of Nabgives an emf withε0150Vwhen the loop is rotated at 60.0revs in a uniform magnetic field of 0.500 T?

Two coils are at fixed locations. When coil 1 has no current and the current in coil 2 increases at the rate 15.0 A/s, the emf in coil 1 is 25.0 mV. (a) What is their mutual inductance? (b) When coil 2 has no current and coil 1 has a current of 3.60A, what is the flux linkage in coil 2?

In Figure, a 120 turncoil of radius 1.8 cm and resistance 5.3Ωis coaxial with a solenoid of 220 turne/cm and diameter 3.2 cm. The solenoid current drops from 1.5 Ato zero in time interval t=25ms. What current is induced in the coil duringt?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free