Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Figure, a circular loop of wire 10 cmin diameter (seen edge-on) is placed with its normal Nat an angleθ=30°with the direction of a uniform magnetic field Bof magnitude 0.50 T. The loop is then rotated such thatrotates in a cone about the field direction at the rate 100 rev/min; angleremains unchanged during the process. What is the emf induced in the loop?

Short Answer

Expert verified

The magnetic flux through the loop is zero, ε=0.

Step by step solution

01

Given

  1. Fig.30-33.
  2. The diameter of the circular loop is, d = 10cm
  3. The angleθ=30°
  4. The uniform magnetic field isB=0.50T
  5. The normalNrotates in the cone about the field direction at the rate 100 rev/min.
  6. Angle remains unchanged during the process.
02

Determining the concept

Using the equation for the magnetic flux and the given information and applying Faraday’s law, find the emf induced in the loop.

Faraday's law of electromagnetic induction states, Whenever a conductor is placed in a varying magnetic field, an electromotive force is induced in it.

Formulae are as follow:

The magnetic flux through the loop is,

Where,ΦBis magnetic flux, B is magnetic field, A is area.

03

Determining the magnetic flux through the loop

The magnetic flux through the loop is,

ΦB=BAcosθ

Since, the angle remains unchanged during the rotation, the magnetic field is uniform and the area is also constant.

Hence, the magnetic fluxΦBthrough the loop is also unchanged during the rotation. That is,

ΦB=constant

According to Faraday’s law, the emf is induced only if there is any change in the magnetic flux.

Therefore, the emf induced in the loop is zero. That is,

ε=-dΦBdt...............................................(30-4)ButΦB=constantε=0

Hence,the magnetic flux through the loop is zero, ε=0.

Therefore, by using Faraday’s law and equation, the magnetic flux through the loop can be determined.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Figure, a wire loop of lengths L = 40.0 cmand W = 25.0 cmlies in a magnetic field B.(a)What is the magnitude εif B=(4.00×10-2Tm)yk^?(b)What is the direction (clockwise or counterclockwise—or “none” if 0) of the emf induced in the loop if B=(4.00×10-2Tm)yk^?(c)What is theεif B=(6.00×10-2Ts)tk^(d)what is the direction if B=(6.00×10-2Ts)tk^(e)What is theεif B=(8.00×10-2Tm.s)ytk^(f)What is the direction if B=(6.00×10-2Ts)tk^(g)What is theεif B=(3.00×10-2Tm.s)xtk^(h)What is the direction if B=(3.00×10-2Tm.s)xtk^(i)What is the if B=(5.00×10-2Tm.s)ytk^(j)What is the direction if B=(5.00×10-2Tm.s)ytk^

In Figure, a metal rod is forced to move with constant velocity valong two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude B = 0.350 T points out of the page.(a) If the rails are separated by L=25.0 cmand the speed of the rod is 55.0 cm/s, what emf is generated? (b) If the rod has a resistance of 18.0Ωand the rails and connector have negligible resistance, what is the current in the rod?

(c) At what rate is energy being transferred to thermal energy?

If 50.0 cmof copper wire (diameter = 1.00 mm) is formed into a circular loop and placed perpendicular to a uniform magnetic field that is increasing at the constant rate of 10.0 mT/s, at what rate is thermal energy generated in the loop?

For the circuit of Figure, assume that ε=10.0V,R=6.70Ω,andL=5.50H. The ideal battery is connected at timet=0. (a) How much energy is delivered by the battery during the first 2.00 s? (b) How much of this energy is stored in the magnetic field of the inductor? (c) How much of this energy is dissipated in the resistor?

Figure 30-30 gives the variation with time of the potential difference VRacross a resistor in three circuits wired as shown in Fig. 30-16. The circuits contain the same resistance Rand emf εbut differ in the inductance L . Rank the circuits according to the value of L, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free