Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 34-46a shows the basic structure of an old film camera. A lens can be moved forward or back to produce an image on film at the back of the camera. For a certain camera, with the distance i between the lens and the film set at f = 5.00 cm, parallel light rays from a very distant object O converge to a point image on the film, as shown. The object is now brought closer, to a distance of p = 100 cm, and the lens–film distance is adjusted so that an inverted real image forms on the film (Fig. 34-46b). (a) What is the lens–film distance i now? (b) By how much was distance i changed?

Short Answer

Expert verified
  1. The lens-film distanceis 5.3 cm.
  2. The change in lens-film distance i is 0.30 cm.

Step by step solution

01

Step 1: Given data

  • Focal length,f=5.0cm .
  • Object distance, p=100cm.
02

Determining the concept

Using the lens formula, calculate the lens-film distance, which is image distance i. Using this, the change in lens-film distance can be calculated.

Formulae are as follows:

1f=1p+1i

Here, p is the pole, and i is the image distance, f is the focal length.

03

(a) Determining the lens-film distance i

According to equation 34-4, find the image distance as,

1f=1p+1i

Rearranging this formula gives,

1i=1f-1p

So,

i=1f-1p-1

Substitute the values in the above expression, and we get,

i=15-1100-1=100×5100-5=50095=5.26cm

So,

i5.3cm

Therefore, the lens-film distance is 5.3 cm.

04

(b) Determine the change in lens-film distance i

The change in the lens-film distance:

Change in lens-film distance is,

Change=i-f=5.3-5.0=0.30cm

Therefore, the change in lens-film distance i is 0.30 cm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A lens is made of glass having an index of refraction of 1.5. One side of the lens is flat, and the other is convex with a radius of curvature of 20 cm(a) Find the focal length of the lens. (b) If an object is placed 40 cmin front of the lens, where is the image?

The formula 1p+1i=1f is called the Gaussian form of the thin-lens formula. Another form of this formula, the Newtonian form, is obtained by considering the distance xfrom the object to the first focal point and the distancex' from the second focal point to the image. Show thatxx'=f2 is the Newtonian form of the thin-lens formula

Figure 34-47a shows the basic structure of the human eye. Light refracts into the eye through the cornea and is then further redirected by a lens whose shape (and thus ability to focus the light) is controlled by muscles. We can treat the cornea and eye lens as a single effective thin lens (Fig. 34-47b). A “normal” eye can focus parallel light rays from a distant object O to a point on the retina at the back of the eye, where the processing of the visual information begins. As an object is brought close to the eye, however, the muscles must change the shape of the lens so that rays form an inverted real image on the retina (Fig. 34-47c). (a) Suppose that for the parallel rays of Figs. 34-47a and b, the focal length fof the effective thin lens of the eye is 2.50 cm. For an object at distance p = 40 cm, what focal length f of the effective lens is required for the object to be seen clearly? (b) Must the eye muscles increase or decrease the radii of curvature of the eye lens to give focal length f?

50 through 57 55, 57 53 Thin lenses. Object Ostands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-6 gives object distance p (centimeters), the type of lens (C stands for converging and D for diverging), and then the distance (centimeters, without proper sign) between a focal point and the lens. Find (a) the image distance localid="1662982946717" iand (b) the lateral magnification m of the object, including signs. Also, determine whether the image is (c) real (R) or virtual (V) , (d) inverted (I) from object O or non inverted (NI), and (e) on the same side of the lens as object Oor on the opposite side.

A man looks through a camera toward an image of a hummingbird in a plane mirror. The camera is 4.30m in front of the mirror. The bird is at the camera level, 5.00mto the man’s right and 3.30mfrom the mirror. What is the distance between the camera and the apparent position of the bird’s image in the mirror?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free