Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

76, 78 75, 77 More lenses. Object Ostands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-8 refers to (a) the lens type, converging (C)or diverging (D), (b) the focal distance f, (c) the object distance p, (d) the image distance i, and (e) the lateral magnification m. (All distances are in centimeters.) It also refers to whether (f) the image is real(R) or virtual(V), (g) inverted (I)or non-inverted (NI) from, and (h) on the same side of the lens as Oor on the opposite side. Fill in the missing information, including the value of m when only an inequality is given, where only a sign is missing, answer with the sign.

Short Answer

Expert verified
  1. The lens type is converging.
  2. The focal distance is +20cm.
  3. The object distance is +8.0cm.
  4. The image distance is -13cm .
  5. The lateral magnification is +1.7 .
  6. The image is virtual (V).
  7. The image is non-inverted (NI).
  8. The image is on the same side of the lens as the object.

Step by step solution

01

Given data

  • The focal distance, f =20cm
  • The object distance, p=+8.0cm
  • The lateral magnification, m>1.0.
02

Understanding the concept of properties of the lens

An object, when placed in front of a lens, produces an image. It could be real or virtual, magnified or diminished, inverted or not inverted. The characteristics of the image are decided by the type of lens used, the focal length of the lens, and the distance of the object from the lens.

Formulae:

The lens formula, 1f=1p+1i

The magnification formula of the lens, m=-ip

03

a) Calculation of the lens type

The magnification m is positive, and m>1.0. So the image is magnified and non-inverted. Hence the image will be virtual. A convergent lens can form a magnified, virtual, and non-inverted image.

Hence, the lens used is convergent.

04

b) Calculation of the focal distance

As the lens used is convergent, the focal length should be taken as positive, so it is +20cm.

05

c) Calculation of the object distance

From the given table, the object distance is given as +8.0 cm.

06

d) Calculation of the image distance

The image distance can be calculated using the given data in equation (1) as follows:

Hence, the image distance is.

1i=1f-1p=120-18.0=-340i=-403.0=-13.3cm=-13cm

Hence, the image distance is -13cm.

07

e) Calculation of the lateral magnification

The lateral magnification can be calculated using the given data in equation (ii) as follows:

m=-(-13.3)8.0=+1.67=+1.7i.e.,m>0

Hence, the value of the magnification is +1.7.

08

f) Calculation of the type of image

The value of image distance is negative.

Hence, the image is virtual (V).

09

g) Calculation if the image is inverted or not

The value of lateral magnification is positive.

Hence, the image is non-inverted (NI).

10

h) Calculation of the position of the object

From the above data, it is given that p<f.

Hence, the image is on the same side as object.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

32 through 38 37, 38 33, 35 Spherical refracting surfaces. An object Ostands on the central axis of a spherical refracting surface. For this situation, each problem in Table 34-5 refers to the index of refraction n1where the object is located, (a) the index of refraction n2on the other side of the refracting surface, (b) the object distancep, (c) the radius of curvature rof the surface, and (d) the image distance i. (All distances are in centimeters.) Fill in the missing information, including whether the image is (e) real (R)or virtual (V)and (f) on the same side of the surface as the object Oor on the opposite side.

58 through 67 61 59 Lenses with given radii. Object stands in front of a thin lens, on the central axis. For this situation, each problem in Table 34-7 gives object distance , index of refraction n of the lens, radius of the nearer lens surface, and radius of the farther lens surface. (All distances are in centimetres.) Find (a) the image distance and (b) the lateral magnification m of the object, including signs. Also, determine whether the image is (c) real (R) or virtual , (d) inverted from object or non-inverted (NI), and (e) on the same side of the lens as object or on the opposite side

32 through 38 37, 38 33, 35 Spherical refracting surfaces. An object Ostands on the central axis of a spherical refracting surface. For this situation, each problem in Table 34-5 refers to the index of refraction n1where the object is located, (a) the index of refraction n2on the other side of the refracting surface, (b) the object distance p, (c) the radius of curvature rof the surface, and (d) the image distance i. (All distances are in centimeters.) Fill in the missing information, including whether the image is (e) real (R)or virtual (V)and (f) on the same side of the surface as the object Oor on the opposite side.

Figure 34-46a shows the basic structure of an old film camera. A lens can be moved forward or back to produce an image on film at the back of the camera. For a certain camera, with the distance i between the lens and the film set at f = 5.00 cm, parallel light rays from a very distant object O converge to a point image on the film, as shown. The object is now brought closer, to a distance of p = 100 cm, and the lens–film distance is adjusted so that an inverted real image forms on the film (Fig. 34-46b). (a) What is the lens–film distance i now? (b) By how much was distance i changed?

50 through 57 55, 57 53 Thin lenses. Object Ostands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-6 gives object distance p (centimeters), the type of lens (C stands for converging and D for diverging), and then the distance (centimeters, without proper sign) between a focal point and the lens. Find (a) the image distance iand (b) the lateral magnification m of the object, including signs. Also, determine whether the image is (c) real (R) or virtual (V) , (d) inverted (I)from object O or non inverted (NI) , and (e) on the same side of the lens as object Oor on the opposite side.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free