Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

58 through 67 61 59 Lenses with given radii. Object stands in front of a thin lens, on the central axis. For this situation, each problem in Table 34-7 gives object distance , index of refraction n of the lens, radius of the nearer lens surface, and radius of the farther lens surface. (All distances are in centimetres.) Find (a) the image distance and (b) the lateral magnification m of the object, including signs. Also, determine whether the image is (c) real (R) or virtual , (d) inverted from object or non-inverted (NI), and (e) on the same side of the lens as object or on the opposite side

Short Answer

Expert verified
  1. The image distance is-9.7cm.
  2. The lateral magnification of the object is+0.54cm.
  3. The image is virtualV.
  4. The image is not inverted NIfrom object.
  5. The image on the same side of the object.

Step by step solution

01

The given data

  1. The object distance, P=+18
  2. The index of refraction of the lens, n=1.60

  3. The radius of the nearer lens surface,r1=-27
  4. The radius of the farther lens surface,r2=+24cm
02

Understanding the concept of properties of the lens

Here, we need to use the concept of image formation by the thin lens. We can use the equation 34.9 and 34.10 together to solve for the image distance. The magnification of the lens can be calculated using equation 34.7. By using the values of image distance and magnification, we can determine whether the image is real or virtual, whether it is inverted or non-inverted and whether it is on the same side as the object or on the opposite side.

03

a) Calculation of the object distance

Using the given data in equation (i), the expression of the focal length of the lens in air is given as follows:

f=r1r2n-1r2-r1=-27cm+24cm1.60-1+24cm--27cm

The given lens is a diverging lens because focal length is negative.

For an object in front of the lens, the object distance and image distance are related to the lensโ€™ focal length. Thus, the image distance can be given using the data in equation (ii) as follows:

role="math" localid="1662979251022" 1i=1f-1Pi=PfP-f

=+18cm-21.2cm+18cm--21.2cm=-9.7cm

Hence, the value of the image distance is .-9.7cm

04

b) Calculation of the lateral magnification of the object

The lateral magnification is the ratio of the object distance to the image distance . It is given using the data in equation (iii) as follows:

m=-9-7cm+18cm=+0.54cm

Hence, the value of the lateral magnification is .+0.54

05

c) Calculation of the behavior of the image

If the object is inside the focal point, then it is a virtual image. The image distance is also negative.

Hence, the image is virtual.

06

d) Calculation if the image is inverted or not

The value of magnification is positive.

Hence, the image is not inverted .

07

e) Calculation of the position of the image

The image distance is negative.

Hence, the image is on the same side of the object.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

17 through 29 22 23, 29 More mirrors. Object O stands on the central axis of a spherical or plane mirror. For this situation, each problem in Table 34-4 refers to (a) the type of mirror, (b) the focal distancef, (c) the radius of curvaturer, (d) the object distancep, (e) the image distancei, and (f) the lateral magnification localid="1663002056640" m. (All distances are in centimeters.) It also refers to whether (g) the image is real (R)or virtual (V), (h) inverted (I)or noninverted (NI)from O, and (i) on the same side of the mirror as the object O or on the opposite side. Fill in the missing information. Where only a sign is missing, answer with the sign.

An object is 10.0 mm from the objective of a certain compound microscope. The lenses are 300 mm apart, and the intermediate image is 50.0 mm from the eyepiece. What overall magnification is produced by the instrument?

You grind the lenses shown in Fig. 34-53 from flat glass disks (n=1.5)using a machine that can grind a radius of curvature of either 40cmor 60cm. In a lens where either radius is appropriate, you select the 40cmradius. Then you hold each lens in sunshine to form an image of the Sun. What are the (a) focal length fand (b) image type (real or virtual) for (bi-convex) lens 1, (c)f and (d) image type for (plane-convex) lens 2, (e) f and (f) image type for (meniscus convex) lens 3, (g) f and (h) image type for (bi-concave) lens 4, (i) fand (j) image type for (plane-concave) lens 5, and (k) f and (l) image type for (meniscus concave) lens 6?

The table details six variations of the basic arrangement of two thin lenses represented in Fig. 34-29. (The points labeledF1and F2are the focal points of lenses 1 and 2.) An object is distancep1to the left of lens 1, as in Fig. 34-18. (a) For which variations can we tell, without calculation, whether the final image (that due to lens 2) is to the left or right of lens 2 and whether it has the same orientation as the object? (b) For those โ€œeasyโ€ variations, give the image location as โ€œleftโ€ or โ€œrightโ€ and the orientation as โ€œsameโ€ or โ€œinverted.โ€

A glass sphere has radius r=-50 cmand index of refraction n1=1.6paperweight is constructed by slicing through the sphere along a plane that is 2.0 cmfrom the center of the sphere, leaving height p = h = 3.0 cm. The paperweight is placed on a table and viewed from directly above by an observer who is distance d=8.0 cmfrom the tabletop (Fig. 34-39). When viewed through the paperweight, how far away does the tabletop appear to be to the observer?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free