Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

50 through 57 55, 57 53 Thin lenses. Object Ostands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-6 gives object distance p (centimeters), the type of lens (C stands for converging and D for diverging), and then the distance (centimeters, without proper sign) between a focal point and the lens. Find (a) the image distance i and (b) the lateral magnification m of the object, including signs. Also, determine whether the image is (c) real (R)or virtual (V) , (d) inverted (I)from object Oor non inverted (NI), and (e) on the same side of the lens as object Oor on the opposite side.

Short Answer

Expert verified
  1. Image distancei=-88cm
  2. Lateral magnificationm=+3.5
  3. Image is virtualV
  4. Image is non-invertedNI
  5. Image is on the same side of the object.

Step by step solution

01

Listing the given quantities

The lens is converging

Focal length,f=35.0cm

Object distance, p=+25

02

Understanding the concepts of lens equation and the formula for magnification

By using the thin lens equation and the formula for magnification, we can find all the required quantities.

Formula:

Thin lens equation,1f=1p+1i

Magnification,m=-ip

03

(a) Calculations of the image distance

Since the lens is converging, the focal length value should be positive, i.e.

f=+35cm

Thin lens equation is

1f=1p+1i135=125+1i1i=1351251i=0.01143

i=-87.5cm-88cm

04

(b) Calculations of the magnification 

Magnification is,

m=ip=8825=3.523.5

Lateral magnification m=+3.5

05

(c) Explanation

As the image distance iis negative, the image is virtual (V).

06

(d) Explanation

As the magnification is positive, the image is non-inverted (NI) .

07

(e) Explanation

For thin lens, the real images form on the opposite side as the object and virtual images form on the same side as the object.

since the image is non-inverted, it forms on the same side of the object.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

17 through 29 22 23, 29 More mirrors. Object O stands on the central axis of a spherical or plane mirror. For this situation, each problem in Table 34-4 refers to (a) the type of mirror, (b) the focal distancef, (c) the radius of curvaturer, (d) the object distancep, (e) the image distancei, and (f) the lateral magnification localid="1663002056640" m. (All distances are in centimeters.) It also refers to whether (g) the image is real (R)or virtual (V), (h) inverted (I)or noninverted (NI)from O, and (i) on the same side of the mirror as the object O or on the opposite side. Fill in the missing information. Where only a sign is missing, answer with the sign.

Figure 34-30 shows four thin lenses, all of the same material, with sides that either are flat or have a radius of curvature of magnitude 10cm. Without written calculation, rank the lenses according to the magnitude of the focal length, greatest first.

17 through 29 22 23, 29 More mirrors. Object stands on the central axis of a spherical or plane mirror. For this situation, each problem in Table 34-4 refers to (a) the type of mirror, (b) the focal distance f, (c) the radius of curvature r, (d) the object distance p, (e) the image distance i, and (f) the lateral magnification m. (All distances are in centimeters.) It also refers to whether (g) the image is real (R) or virtual(V), (h) inverted (I) or noninverted (NI)fromO, and (i) on the same side of the mirror as the object Oor the opposite side. Fill in the missing information. Where only a sign is missing, answer with the sign.

An object is 30.0cmfrom a spherical mirror, along the mirror’s central axis. The mirror produces an inverted image with a lateral magnification of absolute value 0.500. What is the focal length of the mirror?

A concave mirror has a radius of curvature of 24cm. How far is an object from the mirror if the image formed is (a) virtual and 3.0 times the size of the object, (b) real and 3.0 times the size of the object, and (c) real and 1/3 the size of the object?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free