Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A double-convex lens is to be made of glass with an index of refraction of 1.5.One surface is to have twice the radius of curvature of the other and the focal length is to be 60mm. What is the (a) smaller and (b) larger radius?

Short Answer

Expert verified
  1. Smaller radius of the lens is 45mm
  2. Larger radius of the lens is 90mm

Step by step solution

01

Listing the given quantities

Refractive index of lens, n=1.5

Focal length,f=60.0mm

Radius of one surface is twice the other, i.e.,r2=-2r1

02

Understanding the concepts of lens maker equation

By using the Lens maker’s formula, we can find the radius of both curvatures of the lens.

Formula:

Lens maker’s formula

1f=(n-1)(1r1-1r2)...34-10

03

(a) Calculations of the smaller radius of the lens

Lens maker’s formula is given by equation,

1f=n-11r1-1r2

Since one surface has twice the radius of the other and since one surface is convex to the incoming light while the other is concave, we can write,

r2=-2r1

So, we can get,

1fn-1=1r1+12r1=32r1r1=32fn-1=1.560.01.5-1=45mm

Smaller radius of the lens is 45mm.

04

(b) Calculations of the larger radius of the lens

As per the condition given in the problem, r2will be double of r1

So, r2 = 90 mm

Larger radius of the lens is 90 mm

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

9, 11, 13 Spherical mirrors. Object Ostands on the central axis of a spherical mirror. For this situation, each problem in Table 34-3 gives object distance ps (centimeters), the type of mirror, and then the distance (centimeters, without proper sign) between the focal point and the mirror. Find (a) the radius of curvature r (including sign), (b) the image distance i, and (c) the lateral magnification m. Also, determine whether the image is (d) real (R) or virtual (V), (e) inverted (I) from objectO or non-inverted (NI), and (f) on the same side of the mirror asO or on the opposite side.

80 through 87 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicated). Find (a) the image distance i2 for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real (R) or virtual (V), (d) inverted (I) from object O or non-inverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side.

a real inverted imageof an object is formed by a particular lens (not shown); the object–image separation is, measured along the central axis of the lens. The image is just half the size of the object. (a) What kind of lens must be used to produce this image? (b) How far from the object must the lens be placed? (c) What is the focal length of the lens?

80 through 87 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicated). Find (a) the image distance i2for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification Mfor the system, including signs. Also, determine whether the final image is (c) real (R)or virtual (V), (d) inverted(I) from object O or non- inverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side.

An object is 30.0cmfrom a spherical mirror, along the mirror’s central axis. The mirror produces an inverted image with a lateral magnification of absolute value 0.500. What is the focal length of the mirror?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free