Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A movie camera with a (single) lens of focal length 75mmtakesa picture ofa person standing 27maway. If the person is180cmtall, what is the height of the image on the film?

Short Answer

Expert verified

The height of the image on the film is 0.5cm.

Step by step solution

01

Listing the given quantities

Focal length

f=75mm=7.5cm

Object distance

p=27m=2700cm

Height of the personH=180cm

02

Understanding the concepts of optics

The focal length and the object distance is given in the problem. By using the lens equation, we can find the image distance. Using the relation between the magnification, the image distance and the object distance, we can find the magnification. Using the height of the object given in the problem, we can find the height of the image.

Formula:

1f=1i+1pm=-ipm=Imageheight(h')Originalheight(H)

03

Calculations of the height of the image on the film

We have,

1f=1i+1p

Rearranging for,

1i=1f-1pi=11f-1p=117.5-12700=7.5cm

We have,

m=-ipm=Imageheighth'OriginalheightH-ip=Imageheighth'OriginalheightH

Imageheighth'=-ipร—OriginalheightH=-7.52700ร—180=0.5cm

The height of the image on the film is =0.5cm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You grind the lenses shown in Fig. 34-53 from flat glass disks (n=1.5)using a machine that can grind a radius of curvature of either 40cmor 60cm. In a lens where either radius is appropriate, you select the 40cmradius. Then you hold each lens in sunshine to form an image of the Sun. What are the (a) focal length fand (b) image type (real or virtual) for (bi-convex) lens 1, (c)f and (d) image type for (plane-convex) lens 2, (e) f and (f) image type for (meniscus convex) lens 3, (g) f and (h) image type for (bi-concave) lens 4, (i) fand (j) image type for (plane-concave) lens 5, and (k) f and (l) image type for (meniscus concave) lens 6?

An object is 10.0 mm from the objective of a certain compound microscope. The lenses are 300 mm apart, and the intermediate image is 50.0 mm from the eyepiece. What overall magnification is produced by the instrument?

32 through 38 37, 38 33, 35 Spherical refracting surfaces. An object Ostands on the central axis of a spherical refracting surface. For this situation, each problem in Table 34-5 refers to the index of refraction n1where the object is located, (a) the index of refraction n2on the other side of the refracting surface, (b) the object distancep, (c) the radius of curvature rof the surface, and (d) the image distance i. (All distances are in centimeters.) Fill in the missing information, including whether the image is (e) real (R)or virtual (V)and (f) on the same side of the surface as the object Oor on the opposite side.

a real inverted imageof an object is formed by a particular lens (not shown); the objectโ€“image separation is, measured along the central axis of the lens. The image is just half the size of the object. (a) What kind of lens must be used to produce this image? (b) How far from the object must the lens be placed? (c) What is the focal length of the lens?

A peanut is placed 40cmin front of a two-lens system: lens 1 (nearer the peanut) has focal length f1 =20cm, lens 2 has f2=-15cm and the lens separation is d=10cm. For the image produced by lens 2, what are (a) the image distance i2(including sign), (b) the image orientation (inverted relative to the peanut or not inverted), and (c) the image type (real or virtual)? (d) What is the net lateral magnification?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free