Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two thin lenses of focal lengths f1andf2 are in contact and share the same central axis. Show that, in image formation, they are equivalent to a single thin lens for which the focal length is f=f1f2(f1+f2).

Short Answer

Expert verified

In image formation, f1and f2 are equivalent to a single thin lens for which the focal length is f1f2f1+f2.

Step by step solution

01

The given data

Two thin lenses of focal lengths f1andf2are in contact and share the same central axis.

02

Understanding the concept of thin lens

Two thin lenses are in contact with each other with their focal length having the same central axis will form an image. The final image is produced by two lenses, with the image of the first lens being the object for the second. To know the image formation is equivalent to the single thin lens, we will use the concept images from the thin lenses.

Formula:

The lens formula,

1f=1p+1i ...(i)

03

Calculation of the focal length of the thin lens in the image formation

The focal length of the first lens can be calculated by usingequation (i) as follows:

1f1=1p1+1i1

Where, p1is the object distance, i1is the image distance.

Sincep1=, the image is at focal point from the above equation,i1=f1for the first lens.

The focal length applied to the second lens can be calculated using equation (i) as follows:

1f2=1p2+1i2 ...(a)

If the thickness of the lenses can be ignored, the object distance for second lens is p2=-i1orf1. The negative sign indicates that the image formed by the first lens is beyond the second lens. It means the second image is virtual and the object distance is negative. Thus, the thin lens equation in terms of focal lengths can be written as (for getting the focal length of the combined lens, we replace i2=fin equation (a)):

-1f1+1f=1f21f=1f1+1f21f=f2+f1f1f2f=f1f2f1+f2

Hence, the required focal length is f1f2f1+f2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 34-38, a beam of parallel light rays from a laser is incident on a solid transparent sphere of an index of refraction n. (a) If a point image is produced at the back of the sphere, what is the index of refraction of the sphere? (b) What index of refraction, if any, will produce a point image at the center of the sphere?

9, 11, 13 Spherical mirrors. Object O stands on the central axis of a spherical mirror. For this situation, each problem in Table 34-3 gives object distance ps(centimeters), the type of mirror, and then the distance (centimeters, without proper sign) between the focal point and the mirror. Find (a) the radius of curvature r(including sign), (b) the image distance localid="1662986561416" i, and (c) the lateral magnification m. Also, determine whether the image is (d) real (R) or virtual (V), (e) inverted (I) from object O or non-inverted (NI), and (f) on the same side of the mirror as O or on the opposite side.

32 through 38 37, 38 33, 35 Spherical refracting surfaces. An object Ostands on the central axis of a spherical refracting surface. For this situation, each problem in Table 34-5 refers to the index of refraction n1where the object is located, (a) the index of refraction n2on the other side of the refracting surface, (b) the object distance p, (c) the radius of curvature rof the surface, and (d) the image distance i. (All distances are in centimeters.) Fill in the missing information, including whether the image is (e) real (R)or virtual (V)and (f) on the same side of the surface as the objector on the opposite side.

32 through 38 37, 38 33, 35 Spherical refracting surfaces. An object Ostandson the central axis of a spherical refracting surface. For this situation, each problem in Table 34-5 refers to the index of refractionn1where the objectis located, (a) the index of refraction n2on the other side of the refracting surface, (b) the object distance p, (c) the radius of curvature rof the surface, and (d) the image distance i. (All distances are in centimeters.) Fill in the missing information, including whether the image is (e) real (R)or virtual (V)and (f) on the same side of the surface asthe object Oor on the opposite side.

80 through 87 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by converging and for diverging; the number after or is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicated). Find (a) the image distance i2for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification Mfor the system, including signs. Also, determine whether the final image is (c) real (R)or virtual (V), (d) inverted(I) from object or non-inverted (NI), and (e) on the same side of lens 2 as the object or on the opposite side.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free