Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To alleviate the traffic congestion between two cities such as Boston and Washington, D.C, engineers have proposed building a rail tunnel along a chord line connecting the cities (Fig. 13-55). A train, unpropelled by any engine and starting from rest, would fall through the first half of the tunnel and then move up the second half. Assuming Earth is a uniform sphere and ignoring air drag and friction, find the city-to-city travel time.

Short Answer

Expert verified

Answer:

The travel time required from Boston to Washington DC is 42.1 min.

Step by step solution

01

Listing the given quantities

Earth is uniform sphere and ignoring air drag and friction

02

Understanding the concept of gravitational force

The gravitational force at a radial distance r inside Earth (e.g., point A in the figure)

Formula:

Fg=GMmR3r

03

Calculation of the required time

The component of the force along the tunnel is

Fx=Fgsinθ=(-GMmR3r)xr=(GMmR3)x

This can be rewritten as

ax=d2xdt2-GMR3x=-ω2x

Where,ω2=GMR3. The equation is similar to Hooke’s law, in that the force on the train is proportional to the displacement of the train but oppositely directed. Without exiting the tunnel, the motion of the train would be periodic would a period given byT=2πω. The travel time required from Boston to Washington DC is only half that (one-way):

Δt=T2=πω=πR3GM=π(6.37×106m)3(6.67×10-11m3/kg.s2)(5.98×1024kg)=2529s=42.1min

The travel time required from Boston to Washington DC is 42.1 min.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) What is the gravitational potential energy of the two-particle system in Problem 3? If you triple the separation between theparticles, how much work is done (b) by the gravitational force between the particles and (c) by you?

Question: A certain triple-star system consists of two stars, each of mass m , revolving in the same circular orbit of radius raround a central star of mass M (Fig. 13-54).The two orbiting stars are always at opposite ends of a diameter of the orbit. Derive an expression for the period of revolution of the stars.

What are (a) the speed and (b) the period of a220kgsatellite in an approximately circular orbit 640kmabove the surface of Earth? Suppose the satellite loses mechanical energy at the average rate of 1.4×105Jper orbital revolution. Adopting the reasonable approximation that the satellite’s orbit becomes a “circle of slowly diminishing radius,” determine the satellite’s

(c) altitude,(d) speed, and(e) period at the end of its 1500th revolution.

(f) What is the magnitude of the average retarding force on the satellite? Is angular momentum around Earth’s center conserved for (g) the satellite and(h) the satellite–Earth system (assuming that system is isolated)?

A thin rod with massM=5.00kg M=is bent in a semicircle of radiusR=0.650m. (Fig. 13-56). (a) What is its gravitational force (both magnitude and direction on a particle with massm=3.0×10-3kgat P, the center of curvature? (b) What would be the force on the particle the rod were a complete circle?

In 1610, Galileo used his telescope to discover four prominent moons around Jupiter. Their mean orbital radiiaand periodsTare as follows:

(a) Plot log a (y-axis) against log T (x-axis) and show that you get a straight line.

(b) Measure the slope of the line and compare it with the value that you expect from Kepler’s third law.

(c) Find the mass of Jupiter from the intercept of this line with the y axis.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free