Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A certain triple-star system consists of two stars, each of mass m , revolving in the same circular orbit of radius raround a central star of mass M (Fig. 13-54).The two orbiting stars are always at opposite ends of a diameter of the orbit. Derive an expression for the period of revolution of the stars.

Short Answer

Expert verified

Answer

The expression for the period of revolution of the stars is T=2πr3/2GM+m4

Step by step solution

01

Identification of given data

The triple star system, in which the central star has mass m and two stars of mass M are orbiting about diameter

02

Significance of Newton’s law of universal gravitation

Every particle in the universe is attracted to every other particle with a force that is directly proportional to the product of the masses and inversely proportional to the square of the distance, according to Newton's Law of Universal Gravitation.

Formula:

F=GMmr2Fc=mv2rv=2πrT

Where,

F is the gravitational force

Fc is the centripetal force

G is the gravitational constant

M is the mass of earth

v is the speed of object

m is the mass of object

T is the time period of object

03

Determining the expression for the period of revolution of the stars

According to Newton’s law of gravitation, the net gravitational force acting on the mass due to the others is

Fnet=GMmr2+Gmm2r2Fnet=Gmr2M+m4

This star of mass m is moving in an orbit; hence, the centripetal force can be provided by the gravitational force acting on the star. The expression for the centripetal force is

Fc=mv2r

The gravitational force can be balanced by the centripetal force. Therefore,

Gmr2M+m4=mv2r …(i)

According to the expression of orbital velocity of star,

v=2πrTv2=4π2r2T2

Equation (i) becomes

Gmr2M+m4=mr4π2r2T2GM+m4=4π2r3T2T=2πr3/2GM+m4

The expression for the period of revolution of the stars isT=2πr3/2GM+m4

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We watch two identical astronomical bodies Aand B, each of mass m, fall toward each other from rest because of the gravitational force on each from the other. Their initial center-to-center separation isRi. Assume that we are in an inertial reference frame that is stationary with respect to the center of mass of this two body system. Use the principle of conservation of mechanical energy (Kf+ Uf=Ki +Ui ) to find the following when the center-to-center separation is 0.5Ri:

(a) the total kinetic energy of the system,

(b) the kinetic energy of each body,

(c) the speed of each body relative to us, and

(d) the speed of body Brelative to body A. Next assume that we are in a reference frame attached to body A(we ride on the body). Now we see body Bfall from rest toward us. From this reference frame, again useKf+Uf=Ki+Uito find the following when the center-to-center separation is0.5Ri:

(e) the kinetic energy of body Band

(f) the speed of body Brelative to body A.

(g) Why are the answers to (d) and (f) different? Which answer is correct?

Three identical stars of massMform an equilateral triangle that rotates around the triangle’s center as the stars move in a common circle about that center. The triangle has edge lengthL. What is the speed of the stars?

Two dimensions.In the figure, three point particles are fixed in place in anx-yplane. ParticleAhas massmA , particleBhas mass2.00mA, and particleChas mass3.00mA. A fourth particleD, with mass4.00mA, is to be placed near the other three particles. In terms of distanced, at what (a)xcoordinate and (b)ycoordinateshould particle Dbe placed so that the net gravitational force on particle Afrom particles B, C, and Dis zero?

In 1610, Galileo used his telescope to discover four prominent moons around Jupiter. Their mean orbital radiiaand periodsTare as follows:

(a) Plot log a (y-axis) against log T (x-axis) and show that you get a straight line.

(b) Measure the slope of the line and compare it with the value that you expect from Kepler’s third law.

(c) Find the mass of Jupiter from the intercept of this line with the y axis.

A massMis split into two parts,mand role="math" localid="1657189921712" M-m, which are0 then separated by a certain distance. What ratiom-Mmaximizes the magnitude of the gravitational force between the parts?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free