Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a certain binary-star system, each star has the same mass as our Sun, and they revolve about their center of mass. The distance between them is the same as the distance between Earth and the Sun. What is their period of revolution in years?

Short Answer

Expert verified

The period of revolution of the binary-star system is 0.71year

Step by step solution

01

Step 1: Given

The mass of each star of the binary-star system isM=1.99×1030 kg

The distance between two stars of the binary-star system is d=2r=1.5×1011 m

02

Determining the concept

Find the period by equating the gravitational force of attraction and centripetal force in the binary star system. Gravitational force is the force exerted by the Earth towards it.

Formulae are as follows:

The Centripetal force,F=Mv2r.

The Gravitational force of attraction between two bodies of masses M and m separated by distance d isF=GMmr2.

where F is the centripetal force, G is the gravitational constant, M, and m are masses, v is velocity and r is the radius.

03

Determining the period of revolution of the binary-star system

Now,

The gravitational force between stars = centripetal force between two stars

F=GM2d2=Mv2r

GM2d2=M2πrT2rGM24r2=M2πrT2rGM24r2=42r2T2rT2=16π2r3GMT=16π2r3GMT=16×(3.142)2(0.75×1011m)36.67×1011Nm2/kg2(1.99×1030kg)T=2.2×107s

But,

1  year=3.156×107s

So,

T=2.241×107s3.156×107s×1year=0.71year

Therefore,the period of revolution of the binary-star system0.71year.

Therefore, using the gravitational force of attraction between two objects and the centripetal force, the period of revolution of a system can be found.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Planet Roton, with a mass of 7.0×1024kgand a radius of 1600km , gravitationally attracts a meteorite that is initially at rest relative to the planet, at a distance great enough to take as infinite.The meteorite falls toward the planet. Assuming the planet is airless, find the speed of the meteorite when it reaches the planet’s surface.

We watch two identical astronomical bodies Aand B, each of mass m, fall toward each other from rest because of the gravitational force on each from the other. Their initial center-to-center separation isRi. Assume that we are in an inertial reference frame that is stationary with respect to the center of mass of this two body system. Use the principle of conservation of mechanical energy (Kf+ Uf=Ki +Ui ) to find the following when the center-to-center separation is 0.5Ri:

(a) the total kinetic energy of the system,

(b) the kinetic energy of each body,

(c) the speed of each body relative to us, and

(d) the speed of body Brelative to body A. Next assume that we are in a reference frame attached to body A(we ride on the body). Now we see body Bfall from rest toward us. From this reference frame, again useKf+Uf=Ki+Uito find the following when the center-to-center separation is0.5Ri:

(e) the kinetic energy of body Band

(f) the speed of body Brelative to body A.

(g) Why are the answers to (d) and (f) different? Which answer is correct?

Two small spaceships, each with massm=2000kg, are in the circular Earth orbit of the figure, at an altitudehof400km.Igor, the commander of one of the ships, arrives at any fixed point in the orbit90sahead of Picard, the commander of the other ship. What are the (a) periodT0and (b) speedv0of the ships? At point P in the figure, Picard fires an instantaneous burst in the forward direction, reducing his ship’s speed by1.00%.after this burst; he follows the elliptical orbit shown dashed in the figure. What are the(c) kinetic energy and (d) potential energy of his ship immediately after the burst? In Picard’s new elliptical orbit, what are (e) the total energyE,(f) the semi major axisrole="math" localid="1661171269628" a, and(g) the orbital periodT?(h) How much earlier than Igor will Picard return toP?

The mean distance of Mars from the Sun is1.52times that of Earth from the Sun. From Kepler’s law of periods, calculate the number of years required for Mars to make one revolution around the Sun; compare your answer with the value given in Appendix C.

The first known collision between space debris and a functioning satellite occurred in 1996: At an altitude of700km, a year old French spy satellite was hit by a piece of an Ariane rocket. A stabilizing boom on the satellite was demolished, and the satellite was sent spinning out of control. Just before the collision and in kilometresper hour, what was the speed of the rocket piece relative to the satellite if both were in circular orbits and the collision was

(a) head-on and

(b) along perpendicular paths?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free